1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
|
struct point {
double x, y;
point(){} point(double x, double y) : x(x), y(y) {}
bool operator <(const point &p) const {
return x < p.x || (x == p.x && y < p.y);
}
};
// 2D cross product.
// Return a positive value, if OAB makes a counter-clockwise turn,
// negative for clockwise turn, and zero if the points are collinear.
double cross(const point &O, const point &A, const point &B){
double d = (A.x - O.x) * (B.y - O.y) - (A.y - O.y) * (B.x - O.x);
if (fabs(d) < 1e-9) return 0.0;
return d;
}
// Returns a list of points on the convex hull in counter-clockwise order.
// Colinear points are not in the convex hull, if you want colinear points in the hull remove "=" in the CCW-Test
// Note: the last point in the returned list is the same as the first one.
vector<point> convexHull(vector<point> P){
int n = P.size(), k = 0;
vector<point> H(2*n);
// Sort points lexicographically
sort(P.begin(), P.end());
// Build lower hull
for (int i = 0; i < n; i++) {
while (k >= 2 && cross(H[k-2], H[k-1], P[i]) <= 0.0) k--;
H[k++] = P[i];
}
// Build upper hull
for (int i = n-2, t = k+1; i >= 0; i--) {
while (k >= t && cross(H[k-2], H[k-1], P[i]) <= 0.0) k--;
H[k++] = P[i];
}
H.resize(k);
return H;
}
|