summaryrefslogtreecommitdiff
path: root/math/tables/probability.tex
blob: f265d102eb6335e4762878a4e264d4a4d84a9933 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
\begin{tabularx}{\linewidth}{|LICIR|}
	\hline
	\multicolumn{3}{|c|}{
		Wahrscheinlichkeitstheorie ($A,B$ Ereignisse und $X,Y$ Variablen)
	} \\
	\hline
	$\E(X + Y) = \E(X) + \E(Y)$ &
	$\E(\alpha X) = \alpha \E(X)$ &
	$X, Y$ unabh. $\Leftrightarrow \E(XY) = \E(X) \cdot \E(Y)$\\
	
	$\Pr[A \vert B] = \frac{\Pr[A \land B]}{\Pr[B]}$ &
	$A, B$ disj. $\Leftrightarrow \Pr[A \land B] = \Pr[A] \cdot \Pr[B]$ &
	$\Pr[A \lor B] = \Pr[A] + \Pr[B] - \Pr[A \land B]$ \\
	\hline
\end{tabularx}
\vfill
\begin{tabularx}{\linewidth}{|Xlr|lrX|}
	\hline
	\multicolumn{6}{|c|}{\textsc{Bertrand}'s Ballot Theorem (Kandidaten $A$ und $B$, $k \in \mathbb{N}$)} \\
	\hline
	& $\#A > k\#B$ & $Pr = \frac{a - kb}{a + b}$ &
	$\#B - \#A \leq k$ & $Pr = 1 - \frac{a!b!}{(a + k + 1)!(b - k - 1)!}$ & \\
	
	& $\#A \geq k\#B$ & $Pr = \frac{a + 1 - kb}{a + 1}$ &
	$\#A \geq \#B + k$ & $Num = \frac{a - k + 1 - b}{a - k + 1} \binom{a + b - k}{b}$ & \\
	\hline
\end{tabularx}