1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
|
bool isPrime(ll n) { // Miller Rabin Primzahltest. O(log n)
if(n == 2) return true;
if(n < 2 || n % 2 == 0) return false;
ll d = n - 1, j = 0;
while(d % 2 == 0) d >>= 1, j++;
for(int a = 2; a <= min((ll)37, n - 1); a++) {
ll v = powMod(a, d, n); // Implementierung von oben.
if(v == 1 || v == n - 1) continue;
for(int i = 1; i <= j; i++) {
v = (v * v) % n;
if(v == n - 1 || v <= 1) break;
}
if(v != n - 1) return false;
}
return true;
}
ll rho(ll n) { // Findet Faktor < n, nicht unbedingt prim.
if (~n & 1) return 2;
ll c = rand() % n, x = rand() % n, y = x, d = 1;
while (d == 1) {
x = ((x * x) % n + c) % n;
y = ((y * y) % n + c) % n;
y = ((y * y) % n + c) % n;
d = gcd(abs(x - y), n); // Implementierung von oben.
}
return d == n ? rho(n) : d;
}
void factor(ll n, map<ll, int> &facts) {
if (n == 1) return;
if (isPrime(n)) {
facts[n]++;
return;
}
ll f = rho(n);
factor(n / f, facts);
factor(f, facts);
}
|