blob: 5faaa90b70db59e4bc5b9bf61aeeff5cd59fad4e (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
|
// Laufzeit: O(n^3)
void swapLines(int n, int l1, int l2) {
for (int i = 0; i <= n; i++) swap(mat[l1][i], mat[l2][i]);
}
void normalLine(int n, int line) {
double factor = mat[line][line];
for (int i = 0; i <= n; i++) {
mat[line][i] /= factor;
}}
void takeAll(int n, int line) {
for (int i = 0; i < n; i++) {
if (i == line) continue;
double diff = mat[i][line];
for (int j = 0; j <= n; j++) {
mat[i][j] -= diff * mat[line][j];
}}}
int gauss(int n) { // Gibt zurück, ob das System (eindeutig) lösbar ist.
for (int i = 0; i < n; i++) {
int swappee = i; // Sucht Pivotzeile für bessere Stabilität.
for (int j = i + 1; j < n; j++)
if (abs(mat[j][i]) > abs(mat[i][i])) swappee = j;
swapLines(n, i, swappee);
if (abs(mat[i][i]) > EPSILON) {
normalLine(n, i);
takeAll(n, i);
}} // Ab jetzt nur noch checks bzgl. Eindeutigkeit/Existenz der Lösung.
for (int i = 0; i < n; i++) {
bool allZero = true;
for (int j = i; j < n; j++)
if (abs(mat[i][j]) > EPSILON) allZero = false;
if (allZero && abs(mat[i][n]) > EPSILON) return INCONSISTENT;
if (allZero && abs(mat[i][n]) < EPSILON) return MULTIPLE;
}
return UNIQUE;
}
|