1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
|
int s, t, f, c; //source, target, single flow, single cost
int res[MAX_V][MAX_V]; //residual graph
vector<edge> edges; //edge list
vector<int> p, dist; //parent pointer, dist field
void augment(int v, int minEdge) {
if (v == s) { f = minEdge; c = minEdge * dist[t]; return; } //c = minEdge * dist[t] added
else if (p[v] != -1) {
augment(p[v], min(minEdge, res[p[v]][v]));
res[p[v]][v] -= f; res[v][p[v]] += f;
}}
//first inititalize res, edges, s and t
int minCostMaxFlow(int v) { //v is number of vertices
int mf = 0, mc = 0, i, j;
while (true) {
f = 0; c = 0;
dist.assign(v, INF); dist[s] = 0;
p.assign(v, -1);
for (i = 0; i < v - 1; i++) { //Bellmann-Ford
for (j = 0; j < (int)edges.size(); j++) {
if (res[edges[j].from][edges[j].to] > 0 && dist[edges[j].from] + edges[j].cost < dist[edges[j].to]) {
dist[edges[j].to] = dist[edges[j].from] + edges[j].cost;
p[edges[j].to] = edges[j].from;
}
}
}
augment(t, INF); //add found path to max flow, method as in EdmondsKarp
if (f == 0) break;
mf += f; mc += c;
}
return mf; //returns max flow, for in cost, use mc
}
|