1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
|
// Berechnet den Flächeninhalt eines Polygons
// (nicht selbstschneidend).
// Punkte gegen den Uhrzeigersinn: positiv, sonst negativ.
double area(const vector<pt>& polygon) {//points unique
double res = 0; int n = sz(polygon);
for (int i = 0; i < n; i++)
res += cross(polygon[i], polygon[(i + 1) % n]);
return 0.5 * res;
}
// Testet, ob ein Punkt im Polygon liegt (beliebige Polygone).
bool inside(pt p, const vector<pt>& polygon) {//points unique
pt rayEnd = p + pt(1, 1000000);
int counter = 0, n = sz(polygon);
for (int i = 0; i < n; i++) {
pt start = polygon[i], end = polygon[(i + 1) % n];
if (lineSegmentIntersection(p, rayEnd, start, end)) {
counter++;
}}
return counter & 1;
}
//convex hull without duplicates, h[0] == h.back()
bool inside(pt p, const vector<pt>& hull) {
if (orientation(hull[0], hull.back(), p) > 0) return false;
ll l = 0, r = sz(hull) - 1;
while (l + 1 < r) {
ll m = (l + r) / 2;
if (orientation(hull[0], hull[m], p) >= 0) l = m;
else r = m;
}
return orientation(hull[l], hull[r], p) >= 0;
}
void rotateMin(vector<pt>& hull) {
auto mi = min_element(all(hull), [](const pt& a, const pt& b){
return real(a) == real(b) ? imag(a) < imag(b)
: real(a) < real(b);
});
rotate(hull.begin(), mi, hull.end());
}
//convex hulls without duplicates, h[0] != h.back()
vector<pt> minkowski(vector<pt> ps, vector<pt> qs) {
rotateMin(ps);
rotateMin(qs);
ps.push_back(ps[0]);
qs.push_back(qs[0]);
ps.push_back(ps[1]);
qs.push_back(qs[1]);
vector<pt> res;
for (ll i = 0, j = 0; i + 2 < sz(ps) || j + 2 < sz(qs);) {
res.push_back(ps[i] + qs[j]);
auto c = cross(ps[i + 1] - ps[i], qs[j + 1] - qs[j]);
if(c <= 0) i++;
if(c >= 0) j++;
}
return res;
}
//convex hulls without duplicates, h[0] != h.back()
double dist(const vector<pt>& ps, const vector<pt>& qs) {
for (pt& q : qs) q *= -1;
auto p = minkowski(ps, qs);
p.push_back(p[0]);
double res = 0.0;
//bool intersect = true;
for (ll i = 0; i + 1 < sz(p); i++) {
//intersect &= cross(p[i], p[i+1] - p[i]) <= 0;
res = max(res, cross(p[i], p[i+1]-p[i]) / abs(p[i+1]-p[i]));
}
return res;
}
|