1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
|
struct node {
int key, prio, left, right, size;
node(int key, int prio) : key(key), prio(prio), left(-1),
right(-1), size(1) {};
};
vector<node> treap;
int getSize(int root) {
return root < 0 ? 0 : treap[root].size;
}
void update(int root) {
if (root < 0) return;
treap[root].size = 1 + getSize(treap[root].left)
+ getSize(treap[root].right);
}
pair<int, int> split(int root, int minKeyRight) {
if (root < 0) return {-1, -1};
if (treap[root].key >= minKeyRight) {
auto leftSplit = split(treap[root].left, minKeyRight);
treap[root].left = leftSplit.second;
update(root);
leftSplit.second = root;
return leftSplit;
} else {
auto rightSplit = split(treap[root].right, minKeyRight);
treap[root].right = rightSplit.first;
update(root);
rightSplit.first = root;
return rightSplit;
}}
int merge (int left, int right) {
if (left < 0) return right;
if (right < 0) return left;
if (treap[left].prio < treap[right].prio) { //min priority heap
treap[left].right = merge(treap[left].right, right);
update(left);
return left;
} else {
treap[right].left = merge(left, treap[right].left);
update(right);
return right;
}}
//insert values with high priority first
int insert(int root, int key, int prio) {
int next = sz(treap);
treap.emplace_back(key, prio);
auto t = split(root, key);
//returns new root
return merge(merge(t.first, next), t.second);
}
int remove(int root, int key) {
if (root < 0) return -1;
if (key < treap[root].key) {
treap[root].left = remove(treap[root].left, key);
update(root);
return root;
} else if (key > treap[root].key) {
treap[root].right = remove(treap[root].right, key);
update(root);
return root;
} else { //check prio?
return merge(treap[root].left, treap[root].right);
}}
int kth(int root, int k) {
if (root < 0) return -1;
int leftSize = getSize(treap[root].left);
if (k < leftSize) return kth(treap[root].left, k);
else if (k > leftSize) {
return kth(treap[root].right, k - 1 - leftSize);
}
return root;
}
|