1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
|
// Usual Tree DP can be broken down in 4 steps:
// - Initialize dp[v] = identity
// - Iterate over all children w and take a value for w
// by looking at dp[w] and possibly the edge label of v -> w
// - combine the values of those children
// usually this operation should be commutative and associative
// - finalize the dp[v] after iterating over all children
struct Reroot {
using T = ll;
// identity element
T E() {}
// x: dp value of child
// e: index of edge going to child
T takeChild(T x, int e) {}
T comb(T x, T y) {}
// called after combining all dp values of children
T fin(T x, int v) {}
vector<vector<pair<int, int>>> g;
vector<int> ord, pae;
vector<T> dp;
T dfs(int v) {
ord.push_back(v);
for (auto [w, e] : g[v]) {
g[w].erase(find(all(g[w]), pair(v, e^1)));
pae[w] = e^1;
dp[v] = comb(dp[v], takeChild(dfs(w), e));
}
return dp[v] = fin(dp[v], v);
}
vector<T> solve(int n, vector<pair<int, int>> edges) {
g.resize(n);
for (int i = 0; i < n-1; i++) {
g[edges[i].first].emplace_back(edges[i].second, 2*i);
g[edges[i].second].emplace_back(edges[i].first, 2*i+1);
}
pae.assign(n, -1);
dp.assign(n, E());
dfs(0);
vector<T> updp(n, E()), res(n, E());
for (int v : ord) {
vector<T> pref(sz(g[v])+1), suff(sz(g[v])+1);
if (v != 0) pref[0] = takeChild(updp[v], pae[v]);
for (int i = 0; i < sz(g[v]); i++){
auto [u, w] = g[v][i];
pref[i+1] = suff[i] = takeChild(dp[u], w);
pref[i+1] = comb(pref[i], pref[i+1]);
}
for (int i = sz(g[v])-1; i >= 0; i--) {
suff[i] = comb(suff[i], suff[i+1]);
}
for (int i = 0; i < sz(g[v]); i++) {
updp[g[v][i].first] = fin(comb(pref[i], suff[i+1]), v);
}
res[v] = fin(pref.back(), v);
}
return res;
}
};
|