summaryrefslogtreecommitdiff
path: root/geometry
diff options
context:
space:
mode:
Diffstat (limited to 'geometry')
-rw-r--r--geometry/geometry.tex1
-rw-r--r--geometry/triangle.tex41
2 files changed, 42 insertions, 0 deletions
diff --git a/geometry/geometry.tex b/geometry/geometry.tex
index e52e454..3e50a8e 100644
--- a/geometry/geometry.tex
+++ b/geometry/geometry.tex
@@ -30,6 +30,7 @@
\subsection{Formeln~~--~\texttt{std::complex}}
\sourcecode{geometry/formulars.cpp}
\sourcecode{geometry/linesAndSegments.cpp}
+\input{geometry/triangle}
\sourcecode{geometry/triangle.cpp}
\sourcecode{geometry/polygon.cpp}
\sourcecode{geometry/circle.cpp}
diff --git a/geometry/triangle.tex b/geometry/triangle.tex
new file mode 100644
index 0000000..3decd54
--- /dev/null
+++ b/geometry/triangle.tex
@@ -0,0 +1,41 @@
+
+\begin{minipage}[T]{0.27\linewidth}
+ Generell:
+ \begin{itemize}
+ \item $\cos(\gamma)=\frac{a^2+b^2-c^2}{2ab}$
+ \item $b=\frac{a}{\sin(\alpha)}\sin(\beta)$
+ %\item $b=\frac{a}{\sin(\pi-\beta-\gamma)}\sin(\beta)$
+ %\item $\sin(\beta)=\frac{b\sin(\alpha)}{a}$ %asin is not uniquely invertible
+ \item $\Delta=\frac{bc}{2}\sin(\alpha)$
+ \end{itemize}
+\end{minipage}
+\hfill
+\begin{minipage}[B]{0.5\linewidth}
+ \centering
+ \begin{tikzpicture}[line cap=round,minimum size=0,x=.7cm,y=0.7cm]
+ \node[circle,inner sep=0] (AA) at (0,0) {$A$};
+ \node[circle,inner sep=0] (BB) at (3,-1) {$B$};
+ \node[circle,inner sep=0] (CC) at (3.666667,1) {$C$};
+
+ \coordinate (A) at (AA.0);
+ \coordinate (B) at (BB.100);
+ \coordinate (C) at (CC.210);
+
+ \pic[draw,angle radius=15,pic text=$\gamma$]{angle = A--C--B};
+ \pic[draw,angle radius=15,pic text=$\beta$]{angle = C--B--A};
+ \pic[draw,angle radius=20,pic text=$\alpha$]{angle = B--A--C};
+
+ \draw (A) to[edge label={$b$},inner sep=1] (C);
+ \draw (A) to[edge label'={$c$},inner sep=1.3] (B);
+ \draw (B) to[edge label'={$a$},inner sep=0.6] (C);
+ \end{tikzpicture}
+\end{minipage}
+\hfill
+\begin{minipage}[T]{0.16\linewidth}
+ $\beta=90^\circ$:
+ \begin{itemize}
+ \item $\sin(\alpha)=\frac{a}{b}$
+ \item $\cos(\alpha)=\frac{c}{b}$
+ \item $\tan(\alpha)=\frac{a}{c}$
+ \end{itemize}
+\end{minipage}