summaryrefslogtreecommitdiff
path: root/content/math/tables
diff options
context:
space:
mode:
Diffstat (limited to 'content/math/tables')
-rw-r--r--content/math/tables/binom.tex31
-rw-r--r--content/math/tables/nim.tex5
-rw-r--r--content/math/tables/numbers.tex59
-rw-r--r--content/math/tables/platonic.tex26
-rw-r--r--content/math/tables/prime-composite.tex49
-rw-r--r--content/math/tables/probability.tex17
-rw-r--r--content/math/tables/series.tex32
-rw-r--r--content/math/tables/stuff.tex9
8 files changed, 86 insertions, 142 deletions
diff --git a/content/math/tables/binom.tex b/content/math/tables/binom.tex
index 878a6b0..9fc9ae3 100644
--- a/content/math/tables/binom.tex
+++ b/content/math/tables/binom.tex
@@ -1,28 +1,27 @@
-\begin{tabularx}{\linewidth}{|XXXX|}
+\begin{expandtable}
+\begin{tabularx}{\linewidth}{|C|}
\hline
- \multicolumn{4}{|c|}{Binomialkoeffizienten} \\
- \hline
- \multicolumn{4}{|c|}{
$\frac{n!}{k!(n - k)!} \hfill=\hfill
\binom{n}{k} \hfill=\hfill
\binom{n}{n - k} \hfill=\hfill
\frac{n}{k}\binom{n - 1}{k - 1} \hfill=\hfill
\frac{n-k+1}{k}\binom{n}{k - 1} \hfill=\hfill
- \binom{n - 1}{k} + \binom{n - 1}{k - 1} \hfill=\hfill
+ \frac{k+1}{n-k}\binom{n}{k + 1} \hfill=\hfill$\\
+
+ $\binom{n - 1}{k - 1} + \binom{n - 1}{k} \hfill=\hfill
+ \binom{n + 1}{k + 1} - \binom{n}{k + 1} \hfill=\hfill
(-1)^k \binom{k - n - 1}{k} \hfill\approx\hfill
- 2^{n} \cdot \frac{2}{\sqrt{2\pi n}}\cdot\exp\left(-\frac{2(x - \frac{n}{2})^2}{n}\right)$
- } \\
+ 2^{n} \cdot \frac{2}{\sqrt{2\pi n}}\cdot\exp\left(-\frac{2(x - \frac{n}{2})^2}{n}\right)$\\
\grayhline
- $\sum\limits_{k = 0}^n \binom{n}{k} = 2^n$ &
- $\sum\limits_{k = 0}^n \binom{k}{m} = \binom{n + 1}{m + 1}$ &
- $\sum\limits_{i = 0}^n \binom{n}{i}^2 = \binom{2n}{n}$ &
- $\sum\limits_{k = 0}^n\binom{r + k}{k} = \binom{r + n + 1}{n}$\\
+ $\sum\limits_{k = 0}^n \binom{n}{k} = 2^n\hfill
+ \sum\limits_{k = 0}^n \binom{k}{m} = \binom{n + 1}{m + 1}\hfill
+ \sum\limits_{i = 0}^n \binom{n}{i}^2 = \binom{2n}{n}\hfill
+ \sum\limits_{k = 0}^n\binom{r + k}{k} = \binom{r + n + 1}{n}$\\
- $\binom{n}{m}\binom{m}{k} = \binom{n}{k}\binom{n - k}{m - k}$ &
- $\sum\limits_{k = 0}^n \binom{r}{k}\binom{s}{n - k} = \binom{r + s}{n}$ &
- \multicolumn{2}{l|}{
- $\sum\limits_{i = 1}^n \binom{n}{i} F_i = F_{2n} \quad F_n = n\text{-th Fib.}$
- }\\
+ $\binom{n}{m}\binom{m}{k} = \binom{n}{k}\binom{n - k}{m - k}\hfill
+ \sum\limits_{k = 0}^n \binom{r}{k}\binom{s}{n - k} = \binom{r + s}{n}\hfill
+ \sum\limits_{i = 1}^n \binom{n}{i} \mathit{Fib}_i = \mathit{Fib}_{2n}$\\
\hline
\end{tabularx}
+\end{expandtable}
diff --git a/content/math/tables/nim.tex b/content/math/tables/nim.tex
index 8490d42..66e289e 100644
--- a/content/math/tables/nim.tex
+++ b/content/math/tables/nim.tex
@@ -1,7 +1,6 @@
+\begin{expandtable}
\begin{tabularx}{\linewidth}{|p{0.37\linewidth}|X|}
\hline
- \multicolumn{2}{|c|}{Nim-Spiele (\ding{182} letzter gewinnt (normal), \ding{183} letzter verliert)} \\
- \hline
Beschreibung &
Strategie \\
\hline
@@ -94,3 +93,5 @@
Periode ab $n = 72$ der Länge $12$.\\
\hline
\end{tabularx}
+\end{expandtable}
+ \ No newline at end of file
diff --git a/content/math/tables/numbers.tex b/content/math/tables/numbers.tex
deleted file mode 100644
index 1dc9f38..0000000
--- a/content/math/tables/numbers.tex
+++ /dev/null
@@ -1,59 +0,0 @@
-\begin{expandtable}
-\begin{tabularx}{\linewidth}{|l|X|}
- \hline
- \multicolumn{2}{|c|}{Berühmte Zahlen} \\
- \hline
- \textsc{Fibonacci} &
- $f(0) = 0 \quad
- f(1) = 1 \quad
- f(n+2) = f(n+1) + f(n)$ \\
- \grayhline
-
- \textsc{Catalan} &
- $C_0 = 1 \qquad
- C_n = \sum\limits_{k = 0}^{n - 1} C_kC_{n - 1 - k} =
- \frac{1}{n + 1}\binom{2n}{n} = \frac{2(2n - 1)}{n+1} \cdot C_{n-1}$ \\
- \grayhline
-
- \textsc{Euler} I &
- $\eulerI{n}{0} = \eulerI{n}{n-1} = 1 \qquad
- \eulerI{n}{k} = (k+1) \eulerI{n-1}{k} + (n-k) \eulerI{n-1}{k-1} $ \\
- \grayhline
-
- \textsc{Euler} II &
- $\eulerII{n}{0} = 1 \quad
- \eulerII{n}{n} = 0 \quad$\\
- & $\eulerII{n}{k} = (k+1) \eulerII{n-1}{k} + (2n-k-1) \eulerII{n-1}{k-1}$ \\
- \grayhline
-
- \textsc{Stirling} I &
- $\stirlingI{0}{0} = 1 \qquad
- \stirlingI{n}{0} = \stirlingI{0}{n} = 0 \qquad
- \stirlingI{n}{k} = \stirlingI{n-1}{k-1} + (n-1) \stirlingI{n-1}{k}$ \\
- \grayhline
-
- \textsc{Stirling} II &
- $\stirlingII{n}{1} = \stirlingII{n}{n} = 1 \qquad
- \stirlingII{n}{k} = k \stirlingII{n-1}{k} + \stirlingII{n-1}{k-1} =
- \frac{1}{k!} \sum\limits_{j=0}^{k} (-1)^{k-j}\binom{k}{j}j^n$\\
- \grayhline
-
- \textsc{Bell} &
- $B_1 = 1 \qquad
- B_n = \sum\limits_{k = 0}^{n - 1} B_k\binom{n-1}{k}
- = \sum\limits_{k = 0}^{n}\stirlingII{n}{k}$\\
- \grayhline
-
- \textsc{Partitions} &
- $p(0,0) = 1 \quad
- p(n,k) = 0 \text{ für } k > n \text{ oder } n \leq 0 \text{ oder } k \leq 0$ \\
- & $p(n,k) = p(n-k,k) + p(n-1,k-1)$\\
- \grayhline
-
- \textsc{Partitions} &
- $f(0) = 1 \quad f(n) = 0~(n < 0)$ \\
- & $f(n)=\sum\limits_{k=1}^\infty(-1)^{k-1}f(n - \frac{k(3k+1)}{2})+\sum\limits_{k=1}^\infty(-1)^{k-1}f(n - \frac{k(3k-1)}{2})$\\
-
- \hline
-\end{tabularx}
-\end{expandtable}
diff --git a/content/math/tables/platonic.tex b/content/math/tables/platonic.tex
index f4ee554..2866ccf 100644
--- a/content/math/tables/platonic.tex
+++ b/content/math/tables/platonic.tex
@@ -1,39 +1,39 @@
+\begin{expandtable}
\begin{tabularx}{\linewidth}{|X|CCCX|}
\hline
- \multicolumn{5}{|c|}{Platonische Körper} \\
- \hline
- Übersicht & Seiten & Ecken & Kanten & dual zu \\
+ Übersicht & |F| & |V| & |E| & dual zu \\
\hline
Tetraeder & 4 & 4 & 6 & Tetraeder \\
- Würfel/Hexaeder & 6 & 8 & 12 & Oktaeder \\
- Oktaeder & 8 & 6 & 12 & Würfel/Hexaeder\\
+ Würfel & 6 & 8 & 12 & Oktaeder \\
+ Oktaeder & 8 & 6 & 12 & Würfel\\
Dodekaeder & 12 & 20 & 30 & Ikosaeder \\
Ikosaeder & 20 & 12 & 30 & Dodekaeder \\
\hline
\multicolumn{5}{|c|}{Färbungen mit maximal $n$ Farben (bis auf Isomorphie)} \\
\hline
- \multicolumn{3}{|l}{Ecken vom Oktaeder/Seiten vom Würfel} &
+ \multicolumn{3}{|l}{|V| vom Oktaeder/|F| vom Würfel} &
\multicolumn{2}{l|}{$(n^6 + 3n^4 + 12n^3 + 8n^2)/24$} \\
- \multicolumn{3}{|l}{Ecken vom Würfel/Seiten vom Oktaeder} &
+ \multicolumn{3}{|l}{|V| vom Würfel/|F| vom Oktaeder} &
\multicolumn{2}{l|}{$(n^8 + 17n^4 + 6n^2)/24$} \\
- \multicolumn{3}{|l}{Kanten vom Würfel/Oktaeder} &
+ \multicolumn{3}{|l}{|E| vom Würfel/Oktaeder} &
\multicolumn{2}{l|}{$(n^{12} + 6n^7 + 3n^6 + 8n^4 + 6n^3)/24$} \\
- \multicolumn{3}{|l}{Ecken/Seiten vom Tetraeder} &
+ \multicolumn{3}{|l}{|V|/|F| vom Tetraeder} &
\multicolumn{2}{l|}{$(n^4 + 11n^2)/12$} \\
- \multicolumn{3}{|l}{Kanten vom Tetraeder} &
+ \multicolumn{3}{|l}{|E| vom Tetraeder} &
\multicolumn{2}{l|}{$(n^6 + 3n^4 + 8n^2)/12$} \\
- \multicolumn{3}{|l}{Ecken vom Ikosaeder/Seiten vom Dodekaeder} &
+ \multicolumn{3}{|l}{|V| vom Ikosaeder/|F| vom Dodekaeder} &
\multicolumn{2}{l|}{$(n^{12} + 15n^6 + 44n^4)/60$} \\
- \multicolumn{3}{|l}{Ecken vom Dodekaeder/Seiten vom Ikosaeder} &
+ \multicolumn{3}{|l}{|V| vom Dodekaeder/|F| vom Ikosaeder} &
\multicolumn{2}{l|}{$(n^{20} + 15n^{10} + 20n^8 + 24n^4)/60$} \\
- \multicolumn{3}{|l}{Kanten vom Dodekaeder/Ikosaeder (evtl. falsch)} &
+ \multicolumn{3}{|l}{|E| vom Dodekaeder/Ikosaeder} &
\multicolumn{2}{l|}{$(n^{30} + 15n^{16} + 20n^{10} + 24n^6)/60$} \\
\hline
\end{tabularx}
+\end{expandtable}
diff --git a/content/math/tables/prime-composite.tex b/content/math/tables/prime-composite.tex
index 99b3348..073b4ba 100644
--- a/content/math/tables/prime-composite.tex
+++ b/content/math/tables/prime-composite.tex
@@ -1,26 +1,31 @@
-\begin{tabularx}{\linewidth}{|r|r|rIr|rIrIr|C|}
+\begin{expandtable}
+\begin{tabularx}{\linewidth}{|r|rIr|rIr|r|r|}
\hline
- \multicolumn{8}{|c|}{Important Numbers} \\
+ \multirow{2}{*}{$10^x$}
+ & \multirow{2}{*}{Highly Composite}
+ & \multirow{2}{*}{\# Divs}
+ & \multicolumn{2}{|c|}{Prime}
+ & \multirow{2}{*}{\# Primes} & \multirow{2}{*}{Primorial} \\
+ & & & $<$ & $>$ & & \\
\hline
- $10^x$ & Highly Composite & \# Divs & $<$ Prime & $>$ Prime & \# Primes & primorial & \\
- \hline
- 1 & 6 & 4 & $-3$ & $+1$ & 4 & 2 & \\
- 2 & 60 & 12 & $-3$ & $+1$ & 25 & 3 & \\
- 3 & 840 & 32 & $-3$ & $+9$ & 168 & 4 & \\
- 4 & 7\,560 & 64 & $-27$ & $+7$ & 1\,229 & 5 & \\
- 5 & 83\,160 & 128 & $-9$ & $+3$ & 9\,592 & 6 & \\
- 6 & 720\,720 & 240 & $-17$ & $+3$ & 78\,498 & 7 & \\
- 7 & 8\,648\,640 & 448 & $-9$ & $+19$ & 664\,579 & 8 & \\
- 8 & 73\,513\,440 & 768 & $-11$ & $+7$ & 5\,761\,455 & 8 & \\
- 9 & 735\,134\,400 & 1\,344 & $-63$ & $+7$ & 50\,847\,534 & 9 & \\
- 10 & 6\,983\,776\,800 & 2\,304 & $-33$ & $+19$ & 455\,052\,511 & 10 & \\
- 11 & 97\,772\,875\,200 & 4\,032 & $-23$ & $+3$ & 4\,118\,054\,813 & 10 & \\
- 12 & 963\,761\,198\,400 & 6\,720 & $-11$ & $+39$ & 37\,607\,912\,018 & 11 & \\
- 13 & 9\,316\,358\,251\,200 & 10\,752 & $-29$ & $+37$ & 346\,065\,536\,839 & 12 & \\
- 14 & 97\,821\,761\,637\,600 & 17\,280 & $-27$ & $+31$ & 3\,204\,941\,750\,802 & 12 & \\
- 15 & 866\,421\,317\,361\,600 & 26\,880 & $-11$ & $+37$ & 29\,844\,570\,422\,669 & 13 & \\
- 16 & 8\,086\,598\,962\,041\,600 & 41\,472 & $-63$ & $+61$ & 279\,238\,341\,033\,925 & 13 & \\
- 17 & 74\,801\,040\,398\,884\,800 & 64\,512 & $-3$ & $+3$ & 2\,623\,557\,157\,654\,233 & 14 & \\
- 18 & 897\,612\,484\,786\,617\,600 & 103\,680 & $-11$ & $+3$ & 24\,739\,954\,287\,740\,860 & 16 & \\
+ 1 & 6 & 4 & $-3$ & $+1$ & 4 & 2 \\
+ 2 & 60 & 12 & $-3$ & $+1$ & 25 & 3 \\
+ 3 & 840 & 32 & $-3$ & $+9$ & 168 & 4 \\
+ 4 & 7\,560 & 64 & $-27$ & $+7$ & 1\,229 & 5 \\
+ 5 & 83\,160 & 128 & $-9$ & $+3$ & 9\,592 & 6 \\
+ 6 & 720\,720 & 240 & $-17$ & $+3$ & 78\,498 & 7 \\
+ 7 & 8\,648\,640 & 448 & $-9$ & $+19$ & 664\,579 & 8 \\
+ 8 & 73\,513\,440 & 768 & $-11$ & $+7$ & 5\,761\,455 & 8 \\
+ 9 & 735\,134\,400 & 1\,344 & $-63$ & $+7$ & 50\,847\,534 & 9 \\
+ 10 & 6\,983\,776\,800 & 2\,304 & $-33$ & $+19$ & 455\,052\,511 & 10 \\
+ 11 & 97\,772\,875\,200 & 4\,032 & $-23$ & $+3$ & 4\,118\,054\,813 & 10 \\
+ 12 & 963\,761\,198\,400 & 6\,720 & $-11$ & $+39$ & 37\,607\,912\,018 & 11 \\
+ 13 & 9\,316\,358\,251\,200 & 10\,752 & $-29$ & $+37$ & 346\,065\,536\,839 & 12 \\
+ 14 & 97\,821\,761\,637\,600 & 17\,280 & $-27$ & $+31$ & 3\,204\,941\,750\,802 & 12 \\
+ 15 & 866\,421\,317\,361\,600 & 26\,880 & $-11$ & $+37$ & 29\,844\,570\,422\,669 & 13 \\
+ 16 & 8\,086\,598\,962\,041\,600 & 41\,472 & $-63$ & $+61$ & 279\,238\,341\,033\,925 & 13 \\
+ 17 & 74\,801\,040\,398\,884\,800 & 64\,512 & $-3$ & $+3$ & 2\,623\,557\,157\,654\,233 & 14 \\
+ 18 & 897\,612\,484\,786\,617\,600 & 103\,680 & $-11$ & $+3$ & 24\,739\,954\,287\,740\,860 & 16 \\
\hline
\end{tabularx}
+\end{expandtable}
diff --git a/content/math/tables/probability.tex b/content/math/tables/probability.tex
index f265d10..29f92e1 100644
--- a/content/math/tables/probability.tex
+++ b/content/math/tables/probability.tex
@@ -1,19 +1,15 @@
-\begin{tabularx}{\linewidth}{|LICIR|}
+\begin{expandtable}
+\begin{tabularx}{\linewidth}{|LIR|}
\hline
- \multicolumn{3}{|c|}{
+ \multicolumn{2}{|c|}{
Wahrscheinlichkeitstheorie ($A,B$ Ereignisse und $X,Y$ Variablen)
} \\
\hline
- $\E(X + Y) = \E(X) + \E(Y)$ &
- $\E(\alpha X) = \alpha \E(X)$ &
- $X, Y$ unabh. $\Leftrightarrow \E(XY) = \E(X) \cdot \E(Y)$\\
-
- $\Pr[A \vert B] = \frac{\Pr[A \land B]}{\Pr[B]}$ &
- $A, B$ disj. $\Leftrightarrow \Pr[A \land B] = \Pr[A] \cdot \Pr[B]$ &
- $\Pr[A \lor B] = \Pr[A] + \Pr[B] - \Pr[A \land B]$ \\
+ $\E(X + Y) = \E(X) + \E(Y)$ & $\Pr[A \vert B] = \frac{\Pr[A \land B]}{\Pr[B]}$ \\
+ $\E(\alpha X) = \alpha \E(X)$ & $\Pr[A \lor B] = \Pr[A] + \Pr[B] - \Pr[A \land B]$ \\
+ $X, Y$ unabh. $\Leftrightarrow \E(XY) = \E(X) \cdot \E(Y)$ & $A, B$ disj. $\Leftrightarrow \Pr[A \land B] = \Pr[A] \cdot \Pr[B]$\\
\hline
\end{tabularx}
-\vfill
\begin{tabularx}{\linewidth}{|Xlr|lrX|}
\hline
\multicolumn{6}{|c|}{\textsc{Bertrand}'s Ballot Theorem (Kandidaten $A$ und $B$, $k \in \mathbb{N}$)} \\
@@ -25,3 +21,4 @@
$\#A \geq \#B + k$ & $Num = \frac{a - k + 1 - b}{a - k + 1} \binom{a + b - k}{b}$ & \\
\hline
\end{tabularx}
+\end{expandtable}
diff --git a/content/math/tables/series.tex b/content/math/tables/series.tex
index 3042781..9618c2b 100644
--- a/content/math/tables/series.tex
+++ b/content/math/tables/series.tex
@@ -1,33 +1,33 @@
-\begin{tabularx}{\linewidth}{|XIXIXIX|}
- \hline
- \multicolumn{4}{|c|}{Reihen} \\
+\begin{expandtable}
+\begin{tabularx}{\linewidth}{|XIXIX|}
\hline
$\sum\limits_{i = 1}^n i = \frac{n(n+1)}{2}$ &
$\sum\limits_{i = 1}^n i^2 = \frac{n(n + 1)(2n + 1)}{6}$ &
- $\sum\limits_{i = 1}^n i^3 = \frac{n^2 (n + 1)^2}{4}$ &
- $H_n = \sum\limits_{i = 1}^n \frac{1}{i}$ \\
+ $\sum\limits_{i = 1}^n i^3 = \frac{n^2 (n + 1)^2}{4}$ \\
\grayhline
- $\sum\limits_{i = 0}^n c^i = \frac{c^{n + 1} - 1}{c - 1} \quad c \neq 1$ &
- $\sum\limits_{i = 0}^\infty c^i = \frac{1}{1 - c} \quad \vert c \vert < 1$ &
- $\sum\limits_{i = 1}^\infty c^i = \frac{c}{1 - c} \quad \vert c \vert < 1$ &
- $\sum\limits_{i = 0}^\infty ic^i = \frac{c}{(1 - c)^2} \quad \vert c \vert < 1$ \\
+ $\sum\limits_{i = 0}^n c^i = \frac{c^{n + 1} - 1}{c - 1} \hfill c \neq 1$ &
+ $\sum\limits_{i = 0}^\infty c^i = \frac{1}{1 - c} \hfill \vert c \vert < 1$ &
+ $\sum\limits_{i = 1}^\infty c^i = \frac{c}{1 - c} \hfill \vert c \vert < 1$ \\
\grayhline
-
+
\multicolumn{2}{|lI}{
$\sum\limits_{i = 0}^n ic^i = \frac{nc^{n + 2} - (n + 1)c^{n + 1} + c}{(c - 1)^2} \quad c \neq 1$
} &
- \multicolumn{2}{l|}{
+ $\sum\limits_{i = 0}^\infty ic^i = \frac{c}{(1 - c)^2} \hfill \vert c \vert < 1$ \\
+ \grayhline
+
+ \multicolumn{2}{|lI}{
$\sum\limits_{i = 1}^n iH_i = \frac{n(n + 1)}{2}H_n - \frac{n(n - 1)}{4}$
- } \\
+ } &
+ $H_n = \sum\limits_{i = 1}^n \frac{1}{i}$ \\
\grayhline
\multicolumn{2}{|lI}{
- $\sum\limits_{i = 1}^n H_i = (n + 1)H_n - n$
- } &
- \multicolumn{2}{l|}{
$\sum\limits_{i = 1}^n \binom{i}{m}H_i =
\binom{n + 1}{m + 1} \left(H_{n + 1} - \frac{1}{m + 1}\right)$
- } \\
+ } &
+ $\sum\limits_{i = 1}^n H_i = (n + 1)H_n - n$ \\
\hline
\end{tabularx}
+\end{expandtable}
diff --git a/content/math/tables/stuff.tex b/content/math/tables/stuff.tex
index 3cf8b4c..82f2d3f 100644
--- a/content/math/tables/stuff.tex
+++ b/content/math/tables/stuff.tex
@@ -1,6 +1,7 @@
-\begin{tabularx}{\linewidth}{|ll|}
+\begin{expandtable}
+\begin{tabularx}{\linewidth}{|Ll|}
\hline
- \multicolumn{2}{|C|}{Verschiedenes} \\
+ \multicolumn{2}{|c|}{Verschiedenes} \\
\hline
Türme von Hanoi, minimale Schirttzahl: &
$T_n = 2^n - 1$ \\
@@ -20,7 +21,7 @@
\#Wälder mit $k$ gewurzelten Bäumen &
$\frac{k}{n}\binom{n}{k}n^{n-k}$ \\
- \#Wälder mit $k$ gewurzelten Bäumen mit vorgegebenen Wurzelknoten&
+ \#Wälder mit $k$ gewurzelten~Bäumen mit vorgegebenen Wurzelknoten&
$\frac{k}{n}n^{n-k}$ \\
Derangements &
@@ -29,4 +30,4 @@
$\lim\limits_{n \to \infty} \frac{!n}{n!} = \frac{1}{e}$ \\
\hline
\end{tabularx}
-
+\end{expandtable}