summaryrefslogtreecommitdiff
path: root/content/math/tables/binom.tex
diff options
context:
space:
mode:
Diffstat (limited to 'content/math/tables/binom.tex')
-rw-r--r--content/math/tables/binom.tex31
1 files changed, 15 insertions, 16 deletions
diff --git a/content/math/tables/binom.tex b/content/math/tables/binom.tex
index 878a6b0..9fc9ae3 100644
--- a/content/math/tables/binom.tex
+++ b/content/math/tables/binom.tex
@@ -1,28 +1,27 @@
-\begin{tabularx}{\linewidth}{|XXXX|}
+\begin{expandtable}
+\begin{tabularx}{\linewidth}{|C|}
\hline
- \multicolumn{4}{|c|}{Binomialkoeffizienten} \\
- \hline
- \multicolumn{4}{|c|}{
$\frac{n!}{k!(n - k)!} \hfill=\hfill
\binom{n}{k} \hfill=\hfill
\binom{n}{n - k} \hfill=\hfill
\frac{n}{k}\binom{n - 1}{k - 1} \hfill=\hfill
\frac{n-k+1}{k}\binom{n}{k - 1} \hfill=\hfill
- \binom{n - 1}{k} + \binom{n - 1}{k - 1} \hfill=\hfill
+ \frac{k+1}{n-k}\binom{n}{k + 1} \hfill=\hfill$\\
+
+ $\binom{n - 1}{k - 1} + \binom{n - 1}{k} \hfill=\hfill
+ \binom{n + 1}{k + 1} - \binom{n}{k + 1} \hfill=\hfill
(-1)^k \binom{k - n - 1}{k} \hfill\approx\hfill
- 2^{n} \cdot \frac{2}{\sqrt{2\pi n}}\cdot\exp\left(-\frac{2(x - \frac{n}{2})^2}{n}\right)$
- } \\
+ 2^{n} \cdot \frac{2}{\sqrt{2\pi n}}\cdot\exp\left(-\frac{2(x - \frac{n}{2})^2}{n}\right)$\\
\grayhline
- $\sum\limits_{k = 0}^n \binom{n}{k} = 2^n$ &
- $\sum\limits_{k = 0}^n \binom{k}{m} = \binom{n + 1}{m + 1}$ &
- $\sum\limits_{i = 0}^n \binom{n}{i}^2 = \binom{2n}{n}$ &
- $\sum\limits_{k = 0}^n\binom{r + k}{k} = \binom{r + n + 1}{n}$\\
+ $\sum\limits_{k = 0}^n \binom{n}{k} = 2^n\hfill
+ \sum\limits_{k = 0}^n \binom{k}{m} = \binom{n + 1}{m + 1}\hfill
+ \sum\limits_{i = 0}^n \binom{n}{i}^2 = \binom{2n}{n}\hfill
+ \sum\limits_{k = 0}^n\binom{r + k}{k} = \binom{r + n + 1}{n}$\\
- $\binom{n}{m}\binom{m}{k} = \binom{n}{k}\binom{n - k}{m - k}$ &
- $\sum\limits_{k = 0}^n \binom{r}{k}\binom{s}{n - k} = \binom{r + s}{n}$ &
- \multicolumn{2}{l|}{
- $\sum\limits_{i = 1}^n \binom{n}{i} F_i = F_{2n} \quad F_n = n\text{-th Fib.}$
- }\\
+ $\binom{n}{m}\binom{m}{k} = \binom{n}{k}\binom{n - k}{m - k}\hfill
+ \sum\limits_{k = 0}^n \binom{r}{k}\binom{s}{n - k} = \binom{r + s}{n}\hfill
+ \sum\limits_{i = 1}^n \binom{n}{i} \mathit{Fib}_i = \mathit{Fib}_{2n}$\\
\hline
\end{tabularx}
+\end{expandtable}