diff options
| -rw-r--r-- | content/math/linearRecurrence.cpp | 30 | ||||
| -rw-r--r-- | content/math/linearRecurrenceOld.cpp (renamed from content/math/linearRecurence.cpp) | 0 | ||||
| -rw-r--r-- | content/math/math.tex | 5 | ||||
| -rw-r--r-- | tcr.pdf | bin | 696418 -> 696332 bytes | |||
| -rw-r--r-- | test/math/linearRecurenceOld.cpp (renamed from test/math/linearRecurence.cpp) | 2 | ||||
| -rw-r--r-- | test/math/linearRecurrence.cpp | 57 | ||||
| -rw-r--r-- | test/math/linearRecurrenceSlowMul.cpp | 67 |
7 files changed, 158 insertions, 3 deletions
diff --git a/content/math/linearRecurrence.cpp b/content/math/linearRecurrence.cpp new file mode 100644 index 0000000..c15c25c --- /dev/null +++ b/content/math/linearRecurrence.cpp @@ -0,0 +1,30 @@ +// constexpr ll mod = 998244353; +// vector<ll> mul(const vector<ll> &a, const vector<ll> &b){ +// vector<ll> c(sz(a) + sz(b) - 1); +// for(int i = 0; i < sz(a); i++){ +// for(int j = 0; j < sz(b); j++){ +// c[i+j] += a[i]*b[j] % mod; +// } +// } +// for(ll &x : c) x %= mod; +// return c; +// } + +ll kthTerm(const vector<ll>& f, const vector<ll>& c, ll k){ + int n = sz(c); + vector<ll> q(n+1, 1); + for(int i = 1; i <= n; i++) q[i] = (mod-c[i-1])%mod; + vector<ll> p = mul(f, q); + p.resize(n); + p.push_back(0); + do{ + vector<ll> q2 = q; + for(int i = 1; i <= n; i += 2) q2[i] = (mod - q2[i]) % mod; + vector<ll> x = mul(p, q2), y = mul(q, q2); + for(int i = 0; i <= n; i++){ + p[i] = i == n ? 0 : x[2*i + (k&1)]; + q[i] = y[2*i]; + } + }while(k /= 2); + return p[0]; +}
\ No newline at end of file diff --git a/content/math/linearRecurence.cpp b/content/math/linearRecurrenceOld.cpp index 2501e64..2501e64 100644 --- a/content/math/linearRecurence.cpp +++ b/content/math/linearRecurrenceOld.cpp diff --git a/content/math/math.tex b/content/math/math.tex index dd88a5b..fb66110 100644 --- a/content/math/math.tex +++ b/content/math/math.tex @@ -136,9 +136,10 @@ sich alle Lösungen von $x^2-ny^2=c$ berechnen durch: Sei $f(n)=c_{0}f(n-1)+c_{1}f(n-2)+\dots + c_{n-1}f(0)$ eine lineare Rekurrenz.
\begin{methods}
- \method{kthTerm}{Berechnet $k$-ten Term einer Rekurrenz $n$-ter Ordnung}{\log(k)\cdot n^2}
+ \method{kthTerm}{Berechnet $k$-ten Term einer Rekurrenz $n$-ter Ordnung}{\log(k)\cdot \text{mul}(n)}
\end{methods}
- \sourcecode{math/linearRecurence.cpp}
+ Die Polynom-Multiplikation kann auch mit NTT gemacht werden!
+ \sourcecode{math/linearRecurrence.cpp}
Alternativ kann der \mbox{$k$-te} Term in \runtime{n^3\log(k)} berechnet werden:
$$\renewcommand\arraystretch{1.5}
\setlength\arraycolsep{3pt}
Binary files differdiff --git a/test/math/linearRecurence.cpp b/test/math/linearRecurenceOld.cpp index a5290e5..dab2256 100644 --- a/test/math/linearRecurence.cpp +++ b/test/math/linearRecurenceOld.cpp @@ -1,5 +1,5 @@ #include "../util.h" -#include <math/linearRecurence.cpp> +#include <math/linearRecurrenceOld.cpp> struct RandomRecurence { vector<ll> f, c, cache; diff --git a/test/math/linearRecurrence.cpp b/test/math/linearRecurrence.cpp new file mode 100644 index 0000000..50e98a0 --- /dev/null +++ b/test/math/linearRecurrence.cpp @@ -0,0 +1,57 @@ +#include "../util.h" +#include <math/modPowIterativ.cpp> +#include <math/transforms/ntt.cpp> +#include <math/transforms/multiplyNTT.cpp> +#include <math/linearRecurrence.cpp> + +struct RandomRecurence { + vector<ll> f, c, cache; + RandomRecurence(int n) : f(Random::integers<ll>(n, 0, mod)), c(Random::integers<ll>(n, 0, mod)), cache(f) {} + + ll operator()(ll k){ + while (sz(cache) <= k) { + ll cur = 0; + for (ll i = 0; i < sz(c); i++) { + cur += (c[i] * cache[sz(cache) - i - 1]) % mod; + } + cur %= mod; + cache.push_back(cur); + } + return cache[k]; + } +}; + +void stress_test() { + int queries = 0; + for (int i = 0; i < 1'000; i++) { + int n = Random::integer<int>(1, 10); + RandomRecurence f(n); + for (int j = 0; j < 100; j++) { + ll k = Random::integer<ll>(0, 1000); + + ll got = kthTerm(f.f, f.c, k); + ll expected = f(k); + + if (got != expected) cerr << "got: " << got << ", expected: " << expected << FAIL; + queries++; + } + } + cerr << "tested random queries: " << queries << endl; +} + +constexpr int N = 100'000; +void performance_test() { + timer t; + RandomRecurence f(N); + t.start(); + hash_t hash = kthTerm(f.f, f.c, 1e18); + t.stop(); + if (t.time > 8000) cerr << "too slow: " << t.time << FAIL; + cerr << "tested performance: " << t.time << "ms (hash: " << hash << ")" << endl; +} + +int main() { + stress_test(); + performance_test(); +} + diff --git a/test/math/linearRecurrenceSlowMul.cpp b/test/math/linearRecurrenceSlowMul.cpp new file mode 100644 index 0000000..205e584 --- /dev/null +++ b/test/math/linearRecurrenceSlowMul.cpp @@ -0,0 +1,67 @@ +#include "../util.h" + +constexpr ll mod = 998244353; +vector<ll> mul(const vector<ll> &a, const vector<ll> &b){ + vector<ll> c(sz(a) + sz(b) - 1); + for(int i = 0; i < sz(a); i++){ + for(int j = 0; j < sz(b); j++){ + c[i+j] += a[i]*b[j] % mod; + } + } + for(ll &x : c) x %= mod; + return c; +} + +#include <math/linearRecurrence.cpp> + +struct RandomRecurence { + vector<ll> f, c, cache; + RandomRecurence(int n) : f(Random::integers<ll>(n, 0, mod)), c(Random::integers<ll>(n, 0, mod)), cache(f) {} + + ll operator()(ll k){ + while (sz(cache) <= k) { + ll cur = 0; + for (ll i = 0; i < sz(c); i++) { + cur += (c[i] * cache[sz(cache) - i - 1]) % mod; + } + cur %= mod; + cache.push_back(cur); + } + return cache[k]; + } +}; + +void stress_test() { + int queries = 0; + for (int i = 0; i < 10'000; i++) { + int n = Random::integer<int>(1, 10); + RandomRecurence f(n); + for (int j = 0; j < 100; j++) { + ll k = Random::integer<ll>(0, 1000); + + ll got = kthTerm(f.f, f.c, k); + ll expected = f(k); + + if (got != expected) cerr << "got: " << got << ", expected: " << expected << FAIL; + queries++; + } + } + cerr << "tested random queries: " << queries << endl; +} + +constexpr int N = 1'000; +void performance_test() { + timer t; + RandomRecurence f(N); + t.start(); + hash_t hash = kthTerm(f.f, f.c, 1e18); + t.stop(); + if (t.time > 500) cerr << "too slow: " << t.time << FAIL; + cerr << "tested performance: " << t.time << "ms (hash: " << hash << ")" << endl; +} + +int main() { + stress_test(); + performance_test(); +} + |
