summaryrefslogtreecommitdiff
path: root/math
diff options
context:
space:
mode:
authorPaul Jungeblut <paul.jungeblut@gmail.com>2017-07-10 16:44:39 +0200
committerPaul Jungeblut <paul.jungeblut@gmail.com>2017-07-10 16:44:39 +0200
commite9fcd01ba01b8ad5db5c72d678a0682bd15334e5 (patch)
tree57567b073080a525021bccdfdf6878b69445e1fe /math
parent46b25f88e862a320db09e4d964bc9326ab37af78 (diff)
Adding code to count the number of inversions.
Diffstat (limited to 'math')
-rw-r--r--math/inversions.cpp27
-rw-r--r--math/math.tex3
-rw-r--r--math/multInv.cpp2
-rw-r--r--math/primeSieve.cpp4
4 files changed, 34 insertions, 2 deletions
diff --git a/math/inversions.cpp b/math/inversions.cpp
new file mode 100644
index 0000000..0720407
--- /dev/null
+++ b/math/inversions.cpp
@@ -0,0 +1,27 @@
+// Laufzeit: O(n*log(n))
+ll merge(vector<ll> &v, vector<ll> &left, vector<ll> &right) {
+ int a = 0, b = 0, i = 0;
+ ll inv = 0;
+ while (a < (int)left.size() && b < (int)right.size()) {
+ if (left[a] < right[b]) v[i++] = left[a++];
+ else {
+ inv += left.size() - a;
+ v[i++] = right[b++];
+ }
+ }
+ while (a < (int)left.size()) v[i++] = left[a++];
+ while (b < (int)right.size()) v[i++] = right[b++];
+ return inv;
+}
+
+ll mergeSort(vector<ll> &v) { // Sortiert v und gibt Inversionszahl zurück.
+ int n = v.size();
+ vector<ll> left(n / 2), right((n + 1) / 2);
+ for (int i = 0; i < n / 2; i++) left[i] = v[i];
+ for (int i = n / 2; i < n; i++) right[i - n / 2] = v[i];
+
+ ll result = 0;
+ if (left.size() > 1) result += mergeSort(left);
+ if (right.size() > 1) result += mergeSort(right);
+ return result + merge(v, left, right);
+}
diff --git a/math/math.tex b/math/math.tex
index c02d352..1a4a684 100644
--- a/math/math.tex
+++ b/math/math.tex
@@ -120,6 +120,9 @@ Multipliziert Polynome $A$ und $B$.
\subsection{Longest Increasing Subsequence}
\lstinputlisting{math/longestIncreasingSubsequence.cpp}
+\subsection{Inversionszahl und Mergesort}
+\lstinputlisting{math/inversions.cpp}
+
\subsection{Satz von \textsc{Sprague-Grundy}}
Weise jedem Zustand $X$ wie folgt eine \textsc{Grundy}-Zahl $g\left(X\right)$ zu:
\[
diff --git a/math/multInv.cpp b/math/multInv.cpp
index 2aedcd6..4e388b8 100644
--- a/math/multInv.cpp
+++ b/math/multInv.cpp
@@ -2,6 +2,6 @@
ll multInv(ll n, ll p) {
ll x, y;
extendedEuclid(n, p, x, y); // Implementierung von oben.
- x += ((x / p) + 1) * p;
+ x = ((x % p) + p) % p;
return x % p;
}
diff --git a/math/primeSieve.cpp b/math/primeSieve.cpp
index 7e8b288..286aa1d 100644
--- a/math/primeSieve.cpp
+++ b/math/primeSieve.cpp
@@ -1,4 +1,6 @@
// Laufzeit: O(n * log log n)
+// Kann erweitert werden: Für jede Zahl den kleinsten Primfaktor.
+// Dabei vorsicht: Nicht kleinere Faktoren überschreiben.
#define N 100000000 // Bis 10^8 in unter 64MB Speicher.
bitset<N / 2> isNotPrime;
@@ -13,7 +15,7 @@ inline int primeSieve() { // Rückgabe: Anzahl der Primzahlen < N.
int counter = 1; // Die 2, die sonst vergessen würde.
for (int i = 3; i < N; i += 2) {
if (!isNotPrime[i / 2]) {
- for (int j = 3 * i; j < N; j+= 2 * i) isNotPrime[j / 2] = 1;
+ for (int j = i * i; j < N; j+= 2 * i) isNotPrime[j / 2] = 1;
counter++;
}}
return counter;