diff options
| author | Lucas Schwebler <lucas.schwebler@gmail.com> | 2023-11-15 17:19:47 +0100 |
|---|---|---|
| committer | Lucas Schwebler <lucas.schwebler@gmail.com> | 2023-11-15 17:19:47 +0100 |
| commit | e5676ef4ad6652ea794aac5d10ce8b65b20e9351 (patch) | |
| tree | ed767c455e4ab59b32132d0635539071ced328d4 /math | |
| parent | a7f4c162112a1f80b823984baa0c737df9a7f5e0 (diff) | |
add shortModInv and /usr/bin/time -v
Diffstat (limited to 'math')
| -rw-r--r-- | math/math.tex | 1055 | ||||
| -rw-r--r-- | math/shortModInv.cpp | 3 |
2 files changed, 531 insertions, 527 deletions
diff --git a/math/math.tex b/math/math.tex index 1c3f856..b986770 100644 --- a/math/math.tex +++ b/math/math.tex @@ -1,527 +1,528 @@ -\section{Mathe} - -\begin{algorithm}{Longest Increasing Subsequence} - \begin{itemize} - \item \code{lower\_bound} $\Rightarrow$ streng monoton - \item \code{upper\_bound} $\Rightarrow$ monoton - \end{itemize} - \sourcecode{math/longestIncreasingSubsequence.cpp} -\end{algorithm} - -\begin{algorithm}{Zykel Erkennung} - \begin{methods} - \method{cycleDetection}{findet Zyklus von $x_0$ und Länge in $f$}{b+l} - \end{methods} - \sourcecode{math/cycleDetection.cpp} -\end{algorithm} - -\begin{algorithm}{Permutationen} - \begin{methods} - \method{kthperm}{findet $k$-te Permutation \big($k \in [0, n!$)\big)}{n\*\log(n)} - \end{methods} - \sourcecode{math/kthperm.cpp} - \begin{methods} - \method{permIndex}{bestimmt Index der Permutation \big($\mathit{res} \in [0, n!$)\big)}{n\*\log(n)} - \end{methods} - \sourcecode{math/permIndex.cpp} -\end{algorithm} -\clearpage - -\subsection{Mod-Exponent und Multiplikation über $\boldsymbol{\mathbb{F}_p}$} -%\vspace{-1.25em} -%\begin{multicols}{2} -\method{mulMod}{berechnet $a \cdot b \bmod n$}{\log(b)} -\sourcecode{math/modMulIterativ.cpp} -% \vfill\null\columnbreak -\method{powMod}{berechnet $a^b \bmod n$}{\log(b)} -\sourcecode{math/modPowIterativ.cpp} -%\end{multicols} -%\vspace{-2.75em} -\begin{itemize} - \item für $a > 10^9$ \code{__int128} oder \code{modMul} benutzten! -\end{itemize} - -\begin{algorithm}{ggT, kgV, erweiterter euklidischer Algorithmus} - \runtime{\log(a) + \log(b)} - \sourcecode{math/gcd-lcm.cpp} - \sourcecode{math/extendedEuclid.cpp} -\end{algorithm} - -\subsection{Multiplikatives Inverses von $\boldsymbol{n}$ in $\boldsymbol{\mathbb{Z}/p\mathbb{Z}}$} -\textbf{Falls $\boldsymbol{p}$ prim:}\quad $x^{-1} \equiv x^{p-2} \bmod p$ - -\textbf{Falls $\boldsymbol{\ggT(n, p) = 1}$:} -\begin{itemize} - \item Erweiterter euklidischer Algorithmus liefert $\alpha$ und $\beta$ mit - $\alpha n + \beta p = 1$. - \item Nach Kongruenz gilt $\alpha n + \beta p \equiv \alpha n \equiv 1 \bmod p$. - \item $n^{-1} :\equiv \alpha \bmod p$ -\end{itemize} -\textbf{Sonst $\boldsymbol{\ggT(n, p) > 1}$:}\quad Es existiert kein $x^{-1}$. -\sourcecode{math/multInv.cpp} - -\paragraph{Lemma von \textsc{Bézout}} -Sei $(x, y)$ eine Lösung der diophantischen Gleichung $ax + by = d$. -Dann lassen sich wie folgt alle Lösungen berechnen: -\[ -\left(x + k\frac{b}{\ggT(a, b)},~y - k\frac{a}{\ggT(a, b)}\right) -\] - -\paragraph{\textsc{Pell}-Gleichungen} -Sei $(\overline{x}, \overline{y})$ die Lösung von $x^2 - ny^2 = 1$, die $x>1$ minimiert. -Sei $(\tilde{x}, \tilde{y})$ die Lösung von $x^2-ny^2 = c$, die $x>1$ minimiert. Dann lassen -sich alle Lösungen von $x^2-ny^2=c$ berechnen durch: -\begin{align*} - x_1&\coloneqq \tilde{x}, & y_1&\coloneqq\tilde{y}\\ - x_{k+1}&\coloneqq \overline{x}x_k+n\overline{y}y_k, & y_{k+1}&\coloneqq\overline{x}y_k+\overline{y}x_k -\end{align*} - -\begin{algorithm}{Lineare Kongruenz} - \begin{itemize} - \item Löst $ax\equiv b\pmod{m}$. - \item Weitere Lösungen unterscheiden sich um \raisebox{2pt}{$\frac{m}{g}$}, es gibt - also $g$ Lösungen modulo $m$. - \end{itemize} - \sourcecode{math/linearCongruence.cpp} -\end{algorithm} - -\begin{algorithm}{Chinesischer Restsatz} - \begin{itemize} - \item Extrem anfällig gegen Overflows. Evtl. häufig 128-Bit Integer verwenden. - \item Direkte Formel für zwei Kongruenzen $x \equiv a \bmod n$, $x \equiv b \bmod m$: - \[ - x \equiv a - y \cdot n \cdot \frac{a - b}{d} \bmod \frac{mn}{d} - \qquad \text{mit} \qquad - d := \ggT(n, m) = yn + zm - \] - Formel kann auch für nicht teilerfremde Moduli verwendet werden. - Sind die Moduli nicht teilerfremd, existiert genau dann eine Lösung, - wenn $a\equiv~b \bmod \ggT(m, n)$. - In diesem Fall sind keine Faktoren - auf der linken Seite erlaubt. - \end{itemize} - \sourcecode{math/chineseRemainder.cpp} -\end{algorithm} - -\begin{algorithm}{Primzahltest \& Faktorisierung} - \method{isPrime}{prüft ob Zahl prim ist}{\log(n)^2} - \sourcecode{math/millerRabin.cpp} - \method{rho}{findet zufälligen Teiler}{\sqrt[\leftroot{3}\uproot{2}4]{n}} - \sourcecode{math/rho.cpp} - %\method{squfof}{findet zufälligen Teiler}{\sqrt[\leftroot{4}\uproot{2}4]{n}} - %\sourcecode{math/squfof.cpp} -\end{algorithm} - -\begin{algorithm}{Teiler} - \begin{methods} - \method{countDivisors}{Zählt Teiler von $n$}{\sqrt[\leftroot{3}\uproot{2}3]{n}} - \end{methods} - \sourcecode{math/divisors.cpp} -\end{algorithm} - -\begin{algorithm}{Primitivwurzeln} - \begin{itemize} - \item Primitivwurzel modulo $n$ existiert $\Leftrightarrow$ $n \in \{2,\ 4,\ p^\alpha,\ 2\cdot p^\alpha \mid\ 2 < p \in \mathbb{P},\ \alpha \in \mathbb{N}\}$ - \item es existiert entweder keine oder $\varphi(\varphi(n))$ inkongruente Primitivwurzeln - \item Sei $g$ Primitivwurzel modulo $n$. - Dann gilt:\newline - Das kleinste $k$, sodass $g^k \equiv 1 \bmod n$, ist $k = \varphi(n)$. - \end{itemize} - \begin{methods} - \method{isPrimitive}{prüft ob $g$ eine Primitivwurzel ist}{\log(\varphi(n))\*\log(n)} - \method{findPrimitive}{findet Primitivwurzel (oder -1)}{\abs{ans}\*\log(\varphi(n))\*\log(n)} - \end{methods} - \sourcecode{math/primitiveRoot.cpp} -\end{algorithm} - -\begin{algorithm}{Diskreter Logarithmus} - \begin{methods} - \method{solve}{bestimmt Lösung $x$ für $a^x=b \bmod m$}{\sqrt{m}\*\log(m)} - \end{methods} - \sourcecode{math/discreteLogarithm.cpp} -\end{algorithm} -%TODO -\begin{algorithm}{Diskrete \textrm{\textit{n}}-te Wurzel} - \begin{methods} - \method{root}{bestimmt Lösung $x$ für $x^a=b \bmod m$ }{\sqrt{m}\*\log(m)} - \end{methods} - Alle Lösungen haben die Form $g^{c + \frac{i \cdot \phi(n)}{\gcd(a, \phi(n))}}$ - \sourcecode{math/discreteNthRoot.cpp} -\end{algorithm} - -\begin{algorithm}{Linearessieb und Multiplikative Funktionen} - Eine (zahlentheoretische) Funktion $f$ heißt multiplikativ wenn $f(1)=1$ und $f(a\cdot b)=f(a)\cdot f(b)$, falls $\ggT(a,b)=1$. - - $\Rightarrow$ Es ist ausreichend $f(p^k)$ für alle primen $p$ und alle $k$ zu kennen. - - \begin{methods} - \method{sieve}{berechnet Primzahlen und co.}{N} - \method{sieved}{Wert der endsprechenden Multiplikativen Funktion}{1} - - \method{naive}{Wert der endsprechenden Multiplikativen Funktion}{\sqrt{n}} - \end{methods} - \textbf{Wichtig:} Sieb rechts ist schneller für \code{isPrime} oder \code{primes}! - - \sourcecode{math/linearSieve.cpp} - \textbf{\textsc{Möbius} Funtkion:} - \begin{itemize} - \item $\mu(n)=+1$, falls $n$ quadratfrei ist und gerade viele Primteiler hat - \item $\mu(n)=-1$, falls $n$ quadratfrei ist und ungerade viele Primteiler hat - \item $\mu(n)=0$, falls $n$ nicht quadratfrei ist - \end{itemize} - - \textbf{\textsc{Euler}sche $\boldsymbol{\varphi}$-Funktion:} - \begin{itemize} - \item Zählt die relativ primen Zahlen $\leq n$. - \item $p$ prim, $k \in \mathbb{N}$: - $~\varphi(p^k) = p^k - p^{k - 1}$ - - \item \textbf{Euler's Theorem:} - Für $b \geq \varphi(c)$ gilt: $a^b \equiv a^{b \bmod \varphi(c) + \varphi(c)} \pmod{c}$. Darüber hinaus gilt: $\gcd(a, c) = 1 \Leftrightarrow a^b \equiv a^{b \bmod \varphi(c)} \pmod{c}$. - Falls $m$ prim ist, liefert das den \textbf{kleinen Satz von \textsc{Fermat}}: - $a^{m} \equiv a \pmod{m}$ - \end{itemize} -\end{algorithm} - - -\begin{algorithm}{Primzahlsieb von \textsc{Eratosthenes}} - \begin{itemize} - \item Bis $10^8$ in unter 64MB Speicher (lange Berechnung) - \end{itemize} - \begin{methods} - \method{primeSieve}{berechnet Primzahlen und Anzahl}{N\*\log(\log(N))} - \method{isPrime}{prüft ob Zahl prim ist}{1} - \end{methods} - \sourcecode{math/primeSieve.cpp} -\end{algorithm} - -\begin{algorithm}{\textsc{Möbius}-Inversion} - \begin{itemize} - \item Seien $f,g : \mathbb{N} \to \mathbb{N}$ und $g(n) := \sum_{d \vert n}f(d)$. - Dann ist $f(n) = \sum_{d \vert n}g(d)\mu(\frac{n}{d})$. - \item $\sum\limits_{d \vert n}\mu(d) = - \begin{cases*} - 1 & falls $n = 1$\\ - 0 & sonst - \end{cases*}$ - \end{itemize} - \textbf{Beispiel Inklusion/Exklusion:} - Gegeben sein eine Sequenz $A={a_1,\ldots,a_n}$ von Zahlen, $1 \leq a_i \leq N$. Zähle die Anzahl der \emph{coprime subsequences}.\newline - \textbf{Lösung}: - Für jedes $x$, sei $cnt[x]$ die Anzahl der Vielfachen von $x$ in $A$. - Es gibt $2^{[x]}-1$ nicht leere Subsequences in $A$, die nur Vielfache von $x$ enthalten. - Die Anzahl der Subsequences mit $\ggT=1$ ist gegeben durch $\sum_{i = 1}^N \mu(i) \cdot (2^{cnt[i]} - 1)$. - %\sourcecode{math/mobius.cpp} -\end{algorithm} - -%\columnbreak -%\subsection{\textsc{Euler}sche $\boldsymbol{\varphi}$-Funktion} -%\begin{itemize} -% \item Zählt die relativ primen Zahlen $\leq n$. -% -% \item Multiplikativ: -% $\gcd(a,b) = 1 \Longrightarrow \varphi(a) \cdot \varphi(b) = \varphi(ab)$ -% -% \item $p$ prim, $k \in \mathbb{N}$: -% $~\varphi(p^k) = p^k - p^{k - 1}$ -% -% \item \textbf{\textsc{Euler}'s Theorem:} -% Für $b \geq \varphi(c)$ gilt: $a^b \equiv a^{b \bmod \varphi(c) + \varphi(c)} \pmod{c}$. Darüber hinaus gilt: $\gcd(a, c) = 1 \Leftrightarrow a^b \equiv a^{b \bmod \varphi(c)} \pmod{c}$. -% Falls $m$ prim ist, liefert das den \textbf{kleinen Satz von \textsc{Fermat}}: -% $a^{m} \equiv a \pmod{m}$ -%\end{itemize} -%\sourcecode{math/phi.cpp} - - -\begin{algorithm}{Numerisch Extremstelle bestimmen} - \sourcecode{math/goldenSectionSearch.cpp} -\end{algorithm} - - -\begin{algorithm}{Numerisch Integrieren, Simpsonregel} - \sourcecode{math/simpson.cpp} -\end{algorithm} - -\begin{algorithm}{Polynome, FFT, NTT \& andere Transformationen} - Multipliziert Polynome $A$ und $B$. - \begin{itemize} - \item $\deg(A \cdot B) = \deg(A) + \deg(B)$ - \item Vektoren \code{a} und \code{b} müssen mindestens Größe - $\deg(A \cdot B) + 1$ haben. - Größe muss eine Zweierpotenz sein. - \item Für ganzzahlige Koeffizienten: \code{(ll)round(real(a[i]))} - \item \emph{xor}, \emph{or} und \emph{and} Transform funktioniert auch mit \code{double} oder modulo einer Primzahl $p$ falls $p \geq 2^{\texttt{bits}}$ - \end{itemize} - %\lstinputlisting{math/fft.cpp} - %\lstinputlisting{math/ntt.cpp} - %\textcolor{safeOrange}{$\blacksquare$} NTT code, %\textcolor{safeGreen}{$\blacksquare$} FFT code - \sourcecode{math/transforms/all.cpp} - Multiplikation mit 2 transforms statt 3: (nur benutzten wenn nötig!) - \sourcecode{math/transforms/fftMul.cpp} -\end{algorithm} - -\subsection{LGS über $\boldsymbol{\mathbb{R}}$} -\method{gauss}{löst LGS}{n^3} -\sourcecode{math/gauss.cpp} - -\subsection{LGS über $\boldsymbol{\mathbb{F}_p}$} -\method{gauss}{löst LGS}{n^3} -\sourcecode{math/lgsFp.cpp} - -\clearpage - -\subsection{Primzahlzählfunktion $\boldsymbol{\pi}$} -\begin{methods} - \method{init}{berechnet $\pi$ bis $N$}{N\*\log(\log(N))} - \method{phi}{zählt zu $p_i$ teilerfremde Zahlen $\leq n$ für alle $i \leq k$}{???} - \method{pi}{zählt Primzahlen $\leq n$ ($n < N^2$)}{n^{2/3}} -\end{methods} -\sourcecode{math/piLehmer.cpp} - -\begin{algorithm}{Lineare-Recurenz} - \begin{methods} - \method{BerlekampMassey}{Berechnet eine lineare Recurenz $n$-ter Ordnung}{n^2} - \method{}{aus den ersten $2n$ Werte}{} - \end{methods} - \sourcecode{math/berlekampMassey.cpp} - Sei $f(n)=c_{n-1}f(n-1)+c_{n-2}f(n-2)+\dots + c_0f(0)$ eine lineare Recurenz. - - \begin{methods} - \method{kthTerm}{Berechnet $k$-ten Term einer Recurenz $n$-ter Ordnung}{\log(k)\cdot n^2} - \end{methods} - \sourcecode{math/linearRecurence.cpp} - Alternativ kann der \mbox{$k$-te} Term in \runtime{n^3\log(k)} berechnet werden: - $$\renewcommand\arraystretch{1.5} - \setlength\arraycolsep{3pt} - \begin{pmatrix} - c_{n-1} & c_{n-2} & \smash{\cdots} & \smash{\cdots} & c_0 \\ - 1 & 0 & \smash{\cdots} & \smash{\cdots} & 0 \\ - 0 & \smash{\ddots} & \smash{\ddots} & & \smash{\vdots} \\ - 0 & \smash{\ddots} & \smash{\ddots} & \smash{\ddots} & \smash{\vdots} \\ - 0 & \smash{\cdots} & 0 & 1 & 0 \\ - \end{pmatrix}^k - \times~~ - \begin{pmatrix} - f(n-1) \\ - f(n-2) \\ - \smash{\vdots} \\ - \smash{\vdots} \\ - f(0) \\ - \end{pmatrix} - ~~=~~ - \begin{pmatrix} - f(n-1+k) \\ - f(n-2+k) \\ - \smash{\vdots} \\ - \smash{\vdots} \\ - f(k) \makebox[0pt][l]{\hspace{15pt}$\vcenter{\hbox{\huge$\leftarrow$}}$}\\ - \end{pmatrix} - $$ -\end{algorithm} - -\begin{algorithm}{Matrix-Exponent} - \begin{methods} - \method{precalc}{berechnet $m^{2^b}$ vor}{\log(b)\*n^3} - \method{calc}{berechnet $m^b_{y,x}$}{\log(b)\cdot n^2} - \end{methods} - \sourcecode{math/matrixPower.cpp} -\end{algorithm} - -\begin{algorithm}{\textsc{Legendre}-Symbol} - Sei $p \geq 3$ eine Primzahl, $a \in \mathbb{Z}$: - \begin{align*} - \legendre{a}{p} &= - \begin{cases*} - \hphantom{-}0 & falls $p~\vert~a$ \\[-1ex] - \hphantom{-}1 & falls $\exists x \in \mathbb{Z}\backslash p\mathbb{Z} : a \equiv x^2 \bmod p$ \\[-1ex] - -1 & sonst - \end{cases*} \\ - \legendre{-1}{p} = (-1)^{\frac{p - 1}{2}} &= - \begin{cases*} - \hphantom{-}1 & falls $p \equiv 1 \bmod 4$ \\[-1ex] - -1 & falls $p \equiv 3 \bmod 4$ - \end{cases*} \\ - \legendre{2}{p} = (-1)^{\frac{p^2 - 1}{8}} &= - \begin{cases*} - \hphantom{-}1 & falls $p \equiv \pm 1 \bmod 8$ \\[-1ex] - -1 & falls $p \equiv \pm 3 \bmod 8$ - \end{cases*} - \end{align*} - \begin{align*} - \legendre{p}{q} \cdot \legendre{q}{p} = (-1)^{\frac{p - 1}{2} \cdot \frac{q - 1}{2}} && - \legendre{a}{p} \equiv a^{\frac{p-1}{2}}\bmod p - \end{align*} - \sourcecode{math/legendre.cpp} -\end{algorithm} - -\begin{algorithm}{Inversionszahl} - \sourcecode{math/inversions.cpp} -\end{algorithm} - -\subsection{Satz von \textsc{Sprague-Grundy}} -Weise jedem Zustand $X$ wie folgt eine \textsc{Grundy}-Zahl $g\left(X\right)$ zu: -\[ -g\left(X\right) := \min\left\{ -\mathbb{Z}_0^+ \setminus -\left\{g\left(Y\right) \mid Y \text{ von } X \text{ aus direkt erreichbar}\right\} -\right\} -\] -$X$ ist genau dann gewonnen, wenn $g\left(X\right) > 0$ ist.\\ -Wenn man $k$ Spiele in den Zuständen $X_1, \ldots, X_k$ hat, dann ist die \textsc{Grundy}-Zahl des Gesamtzustandes $g\left(X_1\right) \oplus \ldots \oplus g\left(X_k\right)$. - -\subsection{Kombinatorik} - -\paragraph{Wilsons Theorem} -A number $n$ is prime if and only if -$(n-1)!\equiv -1\bmod{n}$.\\ -($n$ is prime if and only if $(m-1)!\cdot(n-m)!\equiv(-1)^m\bmod{n}$ for all $m$ in $\{1,\dots,n\}$) -\begin{align*} - (n-1)!\equiv\begin{cases} - -1\bmod{n},&\mathrm{falls}~n \in \mathbb{P}\\ - \hphantom{-}2\bmod{n},&\mathrm{falls}~n = 4\\ - \hphantom{-}0\bmod{n},&\mathrm{sonst} - \end{cases} -\end{align*} - -\paragraph{\textsc{Zeckendorfs} Theorem} -Jede positive natürliche Zahl kann eindeutig als Summe einer oder mehrerer -verschiedener \textsc{Fibonacci}-Zahlen geschrieben werden, sodass keine zwei -aufeinanderfolgenden \textsc{Fibonacci}-Zahlen in der Summe vorkommen.\\ -\emph{Lösung:} Greedy, nimm immer die größte \textsc{Fibonacci}-Zahl, die noch -hineinpasst. - -\paragraph{\textsc{Lucas}-Theorem} -Ist $p$ prim, $m=\sum_{i=0}^km_ip^i$, $n=\sum_{i=0}^kn_ip^i$ ($p$-adische Darstellung), -so gilt -\vspace{-0.75\baselineskip} -\[ - \binom{m}{n} \equiv \prod_{i=0}^k\binom{m_i}{n_i} \bmod{p}. -\] - -%\begin{algorithm}{Binomialkoeffizienten} -\paragraph{Binomialkoeffizienten} - Die Anzahl der \mbox{$k$-elementigen} Teilmengen einer \mbox{$n$-elementigen} Menge. - \begin{methods} - \method{precalc}{berechnet $n!$ und $n!^{-1}$ vor}{\mathit{lim}} - \method{calc\_binom}{berechnet Binomialkoeffizient}{1} - \end{methods} - \sourcecode{math/binomial0.cpp} - Falls $n >= p$ for $\mathit{mod}=p^k$ berechne \textit{fac} und \textit{inv} aber teile $p$ aus $i$ und berechne die häufigkeit von $p$ in $n!$ als $\sum\limits_{i=1}\big\lfloor\frac{n}{p^i}\big\rfloor$ -\columnbreak - - \begin{methods} - \method{calc\_binom}{berechnet Binomialkoeffizient $(n \le 61)$}{k} - \end{methods} - \sourcecode{math/binomial1.cpp} - - \begin{methods} - \method{calc\_binom}{berechnet Binomialkoeffizient modulo Primzahl $p$}{p-n} - \end{methods} - \sourcecode{math/binomial3.cpp} - -% \begin{methods} -% \method{calc\_binom}{berechnet Primfaktoren vom Binomialkoeffizient}{n} -% \end{methods} -% \textbf{WICHTIG:} braucht alle Primzahlen $\leq n$ -% \sourcecode{math/binomial2.cpp} -%\end{algorithm} - -\paragraph{\textsc{Catalan}-Zahlen} -\begin{itemize} - \item Die \textsc{Catalan}-Zahl $C_n$ gibt an: - \begin{itemize} - \item Anzahl der Binärbäume mit $n$ nicht unterscheidbaren Knoten. - \item Anzahl der validen Klammerausdrücke mit $n$ Klammerpaaren. - \item Anzahl der korrekten Klammerungen von $n+1$ Faktoren. - \item Anzahl Möglichkeiten ein konvexes Polygon mit $n + 2$ Ecken zu triangulieren. - \item Anzahl der monotonen Pfade (zwischen gegenüberliegenden Ecken) in - einem $n \times n$-Gitter, die nicht die Diagonale kreuzen. - \end{itemize} -\end{itemize} -\[C_0 = 1\qquad C_n = \sum\limits_{k = 0}^{n - 1} C_kC_{n - 1 - k} = -\frac{1}{n + 1}\binom{2n}{n} = \frac{4n - 2}{n+1} \cdot C_{n-1}\] -\begin{itemize} - \item Formel $1$ erlaubt Berechnung ohne Division in \runtime{n^2} - \item Formel $2$ und $3$ erlauben Berechnung in \runtime{n} -\end{itemize} - -\paragraph{\textsc{Catalan}-Convolution} -\begin{itemize} - \item Anzahl an Klammerausdrücken mit $n+k$ Klammerpaaren, die mit $(^k$ beginnen. -\end{itemize} -\[C^k_0 = 1\qquad C^k_n = \sum\limits_{\mathclap{a_0+a_1+\dots+a_k=n}} C_{a_0}C_{a_1}\cdots C_{a_k} = -\frac{k+1}{n+k+1}\binom{2n+k}{n} = \frac{(2n+k-1)\cdot(2n+k)}{n(n+k+1)} \cdot C_{n-1}\] - -\paragraph{\textsc{Euler}-Zahlen 1. Ordnung} -Die Anzahl der Permutationen von $\{1, \ldots, n\}$ mit genau $k$ Anstiegen. -Für die $n$-te Zahl gibt es $n$ mögliche Positionen zum Einfügen. -Dabei wird entweder ein Anstieg in zwei gesplitted oder ein Anstieg um $n$ ergänzt. -\[\eulerI{n}{0} = \eulerI{n}{n-1} = 1 \quad -\eulerI{n}{k} = (k+1) \eulerI{n-1}{k} + (n-k) \eulerI{n-1}{k-1}= -\sum_{i=0}^{k} (-1)^i\binom{n+1}{i}(k+1-i)^n\] -\begin{itemize} - \item Formel $1$ erlaubt Berechnung ohne Division in \runtime{n^2} - \item Formel $2$ erlaubt Berechnung in \runtime{n\log(n)} -\end{itemize} - -\paragraph{\textsc{Euler}-Zahlen 2. Ordnung} -Die Anzahl der Permutationen von $\{1,1, \ldots, n,n\}$ mit genau $k$ Anstiegen. -\[\eulerII{n}{0} = 1 \qquad\eulerII{n}{n} = 0 \qquad\eulerII{n}{k} = (k+1) \eulerII{n-1}{k} + (2n-k-1) \eulerII{n-1}{k-1}\] -\begin{itemize} - \item Formel erlaubt Berechnung ohne Division in \runtime{n^2} -\end{itemize} - -\paragraph{\textsc{Stirling}-Zahlen 1. Ordnung} -Die Anzahl der Permutationen von $\{1, \ldots, n\}$ mit genau $k$ Zyklen. -Es gibt zwei Möglichkeiten für die $n$-te Zahl. Entweder sie bildet einen eigene Zyklus, oder sie kann an jeder Position in jedem Zyklus einsortiert werden. -\[\stirlingI{0}{0} = 1 \qquad -\stirlingI{n}{0} = \stirlingI{0}{n} = 0 \qquad -\stirlingI{n}{k} = \stirlingI{n-1}{k-1} + (n-1) \stirlingI{n-1}{k}\] -\begin{itemize} - \item Formel erlaubt berechnung ohne Division in \runtime{n^2} -\end{itemize} -\[\sum_{k=0}^{n}\pm\stirlingI{n}{k}x^k=x(x-1)(x-2)\cdots(x-n+1)\] -\begin{itemize} - \item Berechne Polynom mit FFT und benutzte betrag der Koeffizienten \runtime{n\log(n)^2} (nur ungefähr gleich große Polynome zusammen multiplizieren beginnend mit $x-k$) -\end{itemize} - -\paragraph{\textsc{Stirling}-Zahlen 2. Ordnung} -Die Anzahl der Möglichkeiten $n$ Elemente in $k$ nichtleere Teilmengen zu zerlegen. -Es gibt $k$ Möglichkeiten die $n$ in eine $n-1$-Partition einzuordnen. -Dazu kommt der Fall, dass die $n$ in ihrer eigenen Teilmenge (alleine) steht. -\[\stirlingII{n}{1} = \stirlingII{n}{n} = 1 \qquad -\stirlingII{n}{k} = k \stirlingII{n-1}{k} + \stirlingII{n-1}{k-1} = -\frac{1}{k!} \sum\limits_{i=0}^{k} (-1)^{k-i}\binom{k}{i}i^n\] -\begin{itemize} - \item Formel $1$ erlaubt Berechnung ohne Division in \runtime{n^2} - \item Formel $2$ erlaubt Berechnung in \runtime{n\log(n)} -\end{itemize} - -\paragraph{\textsc{Bell}-Zahlen} -Anzahl der Partitionen von $\{1, \ldots, n\}$. -Wie \textsc{Stirling}-Zahlen 2. Ordnung ohne Limit durch $k$. -\[B_1 = 1 \qquad -B_n = \sum\limits_{k = 0}^{n - 1} B_k\binom{n-1}{k} -= \sum\limits_{k = 0}^{n}\stirlingII{n}{k}\qquad\qquad B_{p^m+n}\equiv m\cdot B_n + B_{n+1} \bmod{p}\] - -\paragraph{Partitions} -Die Anzahl der Partitionen von $n$ in genau $k$ positive Summanden. -Die Anzahl der Partitionen von $n$ mit Elementen aus ${1,\dots,k}$. -\begin{align*} - p_0(0)=1 \qquad p_k(n)&=0 \text{ für } k > n \text{ oder } n \leq 0 \text{ oder } k \leq 0\\ - p_k(n)&= p_k(n-k) + p_{k-1}(n-1)\\[2pt] - p(n)&=\sum_{k=1}^{n} p_k(n)=p_n(2n)=\sum\limits_{k\neq0}^\infty(-1)^{k+1}p\bigg(n - \frac{k(3k-1)}{2}\bigg) -\end{align*} -\begin{itemize} - \item in Formel $3$ kann abgebrochen werden wenn $\frac{k(3k-1)}{2} > n$. - \item Die Anzahl der Partitionen von $n$ in bis zu $k$ positive Summanden ist $\sum\limits_{i=0}^{k}p_i(n)=p_k(n+k)$. -\end{itemize} - -\subsection{The Twelvefold Way \textnormal{(verteile $n$ Bälle auf $k$ Boxen)}} -\input{math/tables/twelvefold} - -%\input{math/tables/numbers} - -\begin{algorithm}[optional]{Big Integers} - \sourcecode{math/bigint.cpp} -\end{algorithm} +\section{Mathe}
+
+\begin{algorithm}{Longest Increasing Subsequence}
+ \begin{itemize}
+ \item \code{lower\_bound} $\Rightarrow$ streng monoton
+ \item \code{upper\_bound} $\Rightarrow$ monoton
+ \end{itemize}
+ \sourcecode{math/longestIncreasingSubsequence.cpp}
+\end{algorithm}
+
+\begin{algorithm}{Zykel Erkennung}
+ \begin{methods}
+ \method{cycleDetection}{findet Zyklus von $x_0$ und Länge in $f$}{b+l}
+ \end{methods}
+ \sourcecode{math/cycleDetection.cpp}
+\end{algorithm}
+
+\begin{algorithm}{Permutationen}
+ \begin{methods}
+ \method{kthperm}{findet $k$-te Permutation \big($k \in [0, n!$)\big)}{n\*\log(n)}
+ \end{methods}
+ \sourcecode{math/kthperm.cpp}
+ \begin{methods}
+ \method{permIndex}{bestimmt Index der Permutation \big($\mathit{res} \in [0, n!$)\big)}{n\*\log(n)}
+ \end{methods}
+ \sourcecode{math/permIndex.cpp}
+\end{algorithm}
+\clearpage
+
+\subsection{Mod-Exponent und Multiplikation über $\boldsymbol{\mathbb{F}_p}$}
+%\vspace{-1.25em}
+%\begin{multicols}{2}
+\method{mulMod}{berechnet $a \cdot b \bmod n$}{\log(b)}
+\sourcecode{math/modMulIterativ.cpp}
+% \vfill\null\columnbreak
+\method{powMod}{berechnet $a^b \bmod n$}{\log(b)}
+\sourcecode{math/modPowIterativ.cpp}
+%\end{multicols}
+%\vspace{-2.75em}
+\begin{itemize}
+ \item für $a > 10^9$ \code{__int128} oder \code{modMul} benutzten!
+\end{itemize}
+
+\begin{algorithm}{ggT, kgV, erweiterter euklidischer Algorithmus}
+ \runtime{\log(a) + \log(b)}
+ \sourcecode{math/gcd-lcm.cpp}
+ \sourcecode{math/extendedEuclid.cpp}
+\end{algorithm}
+
+\subsection{Multiplikatives Inverses von $\boldsymbol{n}$ in $\boldsymbol{\mathbb{Z}/p\mathbb{Z}}$}
+\textbf{Falls $\boldsymbol{p}$ prim:}\quad $x^{-1} \equiv x^{p-2} \bmod p$
+
+\textbf{Falls $\boldsymbol{\ggT(n, p) = 1}$:}
+\begin{itemize}
+ \item Erweiterter euklidischer Algorithmus liefert $\alpha$ und $\beta$ mit
+ $\alpha n + \beta p = 1$.
+ \item Nach Kongruenz gilt $\alpha n + \beta p \equiv \alpha n \equiv 1 \bmod p$.
+ \item $n^{-1} :\equiv \alpha \bmod p$
+\end{itemize}
+\textbf{Sonst $\boldsymbol{\ggT(n, p) > 1}$:}\quad Es existiert kein $x^{-1}$.
+% \sourcecode{math/multInv.cpp}
+\sourcecode{math/shortModInv.cpp}
+
+\paragraph{Lemma von \textsc{Bézout}}
+Sei $(x, y)$ eine Lösung der diophantischen Gleichung $ax + by = d$.
+Dann lassen sich wie folgt alle Lösungen berechnen:
+\[
+\left(x + k\frac{b}{\ggT(a, b)},~y - k\frac{a}{\ggT(a, b)}\right)
+\]
+
+\paragraph{\textsc{Pell}-Gleichungen}
+Sei $(\overline{x}, \overline{y})$ die Lösung von $x^2 - ny^2 = 1$, die $x>1$ minimiert.
+Sei $(\tilde{x}, \tilde{y})$ die Lösung von $x^2-ny^2 = c$, die $x>1$ minimiert. Dann lassen
+sich alle Lösungen von $x^2-ny^2=c$ berechnen durch:
+\begin{align*}
+ x_1&\coloneqq \tilde{x}, & y_1&\coloneqq\tilde{y}\\
+ x_{k+1}&\coloneqq \overline{x}x_k+n\overline{y}y_k, & y_{k+1}&\coloneqq\overline{x}y_k+\overline{y}x_k
+\end{align*}
+
+\begin{algorithm}{Lineare Kongruenz}
+ \begin{itemize}
+ \item Löst $ax\equiv b\pmod{m}$.
+ \item Weitere Lösungen unterscheiden sich um \raisebox{2pt}{$\frac{m}{g}$}, es gibt
+ also $g$ Lösungen modulo $m$.
+ \end{itemize}
+ \sourcecode{math/linearCongruence.cpp}
+\end{algorithm}
+
+\begin{algorithm}{Chinesischer Restsatz}
+ \begin{itemize}
+ \item Extrem anfällig gegen Overflows. Evtl. häufig 128-Bit Integer verwenden.
+ \item Direkte Formel für zwei Kongruenzen $x \equiv a \bmod n$, $x \equiv b \bmod m$:
+ \[
+ x \equiv a - y \cdot n \cdot \frac{a - b}{d} \bmod \frac{mn}{d}
+ \qquad \text{mit} \qquad
+ d := \ggT(n, m) = yn + zm
+ \]
+ Formel kann auch für nicht teilerfremde Moduli verwendet werden.
+ Sind die Moduli nicht teilerfremd, existiert genau dann eine Lösung,
+ wenn $a\equiv~b \bmod \ggT(m, n)$.
+ In diesem Fall sind keine Faktoren
+ auf der linken Seite erlaubt.
+ \end{itemize}
+ \sourcecode{math/chineseRemainder.cpp}
+\end{algorithm}
+
+\begin{algorithm}{Primzahltest \& Faktorisierung}
+ \method{isPrime}{prüft ob Zahl prim ist}{\log(n)^2}
+ \sourcecode{math/millerRabin.cpp}
+ \method{rho}{findet zufälligen Teiler}{\sqrt[\leftroot{3}\uproot{2}4]{n}}
+ \sourcecode{math/rho.cpp}
+ %\method{squfof}{findet zufälligen Teiler}{\sqrt[\leftroot{4}\uproot{2}4]{n}}
+ %\sourcecode{math/squfof.cpp}
+\end{algorithm}
+
+\begin{algorithm}{Teiler}
+ \begin{methods}
+ \method{countDivisors}{Zählt Teiler von $n$}{\sqrt[\leftroot{3}\uproot{2}3]{n}}
+ \end{methods}
+ \sourcecode{math/divisors.cpp}
+\end{algorithm}
+
+\begin{algorithm}{Primitivwurzeln}
+ \begin{itemize}
+ \item Primitivwurzel modulo $n$ existiert $\Leftrightarrow$ $n \in \{2,\ 4,\ p^\alpha,\ 2\cdot p^\alpha \mid\ 2 < p \in \mathbb{P},\ \alpha \in \mathbb{N}\}$
+ \item es existiert entweder keine oder $\varphi(\varphi(n))$ inkongruente Primitivwurzeln
+ \item Sei $g$ Primitivwurzel modulo $n$.
+ Dann gilt:\newline
+ Das kleinste $k$, sodass $g^k \equiv 1 \bmod n$, ist $k = \varphi(n)$.
+ \end{itemize}
+ \begin{methods}
+ \method{isPrimitive}{prüft ob $g$ eine Primitivwurzel ist}{\log(\varphi(n))\*\log(n)}
+ \method{findPrimitive}{findet Primitivwurzel (oder -1)}{\abs{ans}\*\log(\varphi(n))\*\log(n)}
+ \end{methods}
+ \sourcecode{math/primitiveRoot.cpp}
+\end{algorithm}
+
+\begin{algorithm}{Diskreter Logarithmus}
+ \begin{methods}
+ \method{solve}{bestimmt Lösung $x$ für $a^x=b \bmod m$}{\sqrt{m}\*\log(m)}
+ \end{methods}
+ \sourcecode{math/discreteLogarithm.cpp}
+\end{algorithm}
+%TODO
+\begin{algorithm}{Diskrete \textrm{\textit{n}}-te Wurzel}
+ \begin{methods}
+ \method{root}{bestimmt Lösung $x$ für $x^a=b \bmod m$ }{\sqrt{m}\*\log(m)}
+ \end{methods}
+ Alle Lösungen haben die Form $g^{c + \frac{i \cdot \phi(n)}{\gcd(a, \phi(n))}}$
+ \sourcecode{math/discreteNthRoot.cpp}
+\end{algorithm}
+
+\begin{algorithm}{Linearessieb und Multiplikative Funktionen}
+ Eine (zahlentheoretische) Funktion $f$ heißt multiplikativ wenn $f(1)=1$ und $f(a\cdot b)=f(a)\cdot f(b)$, falls $\ggT(a,b)=1$.
+
+ $\Rightarrow$ Es ist ausreichend $f(p^k)$ für alle primen $p$ und alle $k$ zu kennen.
+
+ \begin{methods}
+ \method{sieve}{berechnet Primzahlen und co.}{N}
+ \method{sieved}{Wert der endsprechenden Multiplikativen Funktion}{1}
+
+ \method{naive}{Wert der endsprechenden Multiplikativen Funktion}{\sqrt{n}}
+ \end{methods}
+ \textbf{Wichtig:} Sieb rechts ist schneller für \code{isPrime} oder \code{primes}!
+
+ \sourcecode{math/linearSieve.cpp}
+ \textbf{\textsc{Möbius} Funtkion:}
+ \begin{itemize}
+ \item $\mu(n)=+1$, falls $n$ quadratfrei ist und gerade viele Primteiler hat
+ \item $\mu(n)=-1$, falls $n$ quadratfrei ist und ungerade viele Primteiler hat
+ \item $\mu(n)=0$, falls $n$ nicht quadratfrei ist
+ \end{itemize}
+
+ \textbf{\textsc{Euler}sche $\boldsymbol{\varphi}$-Funktion:}
+ \begin{itemize}
+ \item Zählt die relativ primen Zahlen $\leq n$.
+ \item $p$ prim, $k \in \mathbb{N}$:
+ $~\varphi(p^k) = p^k - p^{k - 1}$
+
+ \item \textbf{Euler's Theorem:}
+ Für $b \geq \varphi(c)$ gilt: $a^b \equiv a^{b \bmod \varphi(c) + \varphi(c)} \pmod{c}$. Darüber hinaus gilt: $\gcd(a, c) = 1 \Leftrightarrow a^b \equiv a^{b \bmod \varphi(c)} \pmod{c}$.
+ Falls $m$ prim ist, liefert das den \textbf{kleinen Satz von \textsc{Fermat}}:
+ $a^{m} \equiv a \pmod{m}$
+ \end{itemize}
+\end{algorithm}
+
+
+\begin{algorithm}{Primzahlsieb von \textsc{Eratosthenes}}
+ \begin{itemize}
+ \item Bis $10^8$ in unter 64MB Speicher (lange Berechnung)
+ \end{itemize}
+ \begin{methods}
+ \method{primeSieve}{berechnet Primzahlen und Anzahl}{N\*\log(\log(N))}
+ \method{isPrime}{prüft ob Zahl prim ist}{1}
+ \end{methods}
+ \sourcecode{math/primeSieve.cpp}
+\end{algorithm}
+
+\begin{algorithm}{\textsc{Möbius}-Inversion}
+ \begin{itemize}
+ \item Seien $f,g : \mathbb{N} \to \mathbb{N}$ und $g(n) := \sum_{d \vert n}f(d)$.
+ Dann ist $f(n) = \sum_{d \vert n}g(d)\mu(\frac{n}{d})$.
+ \item $\sum\limits_{d \vert n}\mu(d) =
+ \begin{cases*}
+ 1 & falls $n = 1$\\
+ 0 & sonst
+ \end{cases*}$
+ \end{itemize}
+ \textbf{Beispiel Inklusion/Exklusion:}
+ Gegeben sein eine Sequenz $A={a_1,\ldots,a_n}$ von Zahlen, $1 \leq a_i \leq N$. Zähle die Anzahl der \emph{coprime subsequences}.\newline
+ \textbf{Lösung}:
+ Für jedes $x$, sei $cnt[x]$ die Anzahl der Vielfachen von $x$ in $A$.
+ Es gibt $2^{[x]}-1$ nicht leere Subsequences in $A$, die nur Vielfache von $x$ enthalten.
+ Die Anzahl der Subsequences mit $\ggT=1$ ist gegeben durch $\sum_{i = 1}^N \mu(i) \cdot (2^{cnt[i]} - 1)$.
+ %\sourcecode{math/mobius.cpp}
+\end{algorithm}
+
+%\columnbreak
+%\subsection{\textsc{Euler}sche $\boldsymbol{\varphi}$-Funktion}
+%\begin{itemize}
+% \item Zählt die relativ primen Zahlen $\leq n$.
+%
+% \item Multiplikativ:
+% $\gcd(a,b) = 1 \Longrightarrow \varphi(a) \cdot \varphi(b) = \varphi(ab)$
+%
+% \item $p$ prim, $k \in \mathbb{N}$:
+% $~\varphi(p^k) = p^k - p^{k - 1}$
+%
+% \item \textbf{\textsc{Euler}'s Theorem:}
+% Für $b \geq \varphi(c)$ gilt: $a^b \equiv a^{b \bmod \varphi(c) + \varphi(c)} \pmod{c}$. Darüber hinaus gilt: $\gcd(a, c) = 1 \Leftrightarrow a^b \equiv a^{b \bmod \varphi(c)} \pmod{c}$.
+% Falls $m$ prim ist, liefert das den \textbf{kleinen Satz von \textsc{Fermat}}:
+% $a^{m} \equiv a \pmod{m}$
+%\end{itemize}
+%\sourcecode{math/phi.cpp}
+
+
+\begin{algorithm}{Numerisch Extremstelle bestimmen}
+ \sourcecode{math/goldenSectionSearch.cpp}
+\end{algorithm}
+
+
+\begin{algorithm}{Numerisch Integrieren, Simpsonregel}
+ \sourcecode{math/simpson.cpp}
+\end{algorithm}
+
+\begin{algorithm}{Polynome, FFT, NTT \& andere Transformationen}
+ Multipliziert Polynome $A$ und $B$.
+ \begin{itemize}
+ \item $\deg(A \cdot B) = \deg(A) + \deg(B)$
+ \item Vektoren \code{a} und \code{b} müssen mindestens Größe
+ $\deg(A \cdot B) + 1$ haben.
+ Größe muss eine Zweierpotenz sein.
+ \item Für ganzzahlige Koeffizienten: \code{(ll)round(real(a[i]))}
+ \item \emph{xor}, \emph{or} und \emph{and} Transform funktioniert auch mit \code{double} oder modulo einer Primzahl $p$ falls $p \geq 2^{\texttt{bits}}$
+ \end{itemize}
+ %\lstinputlisting{math/fft.cpp}
+ %\lstinputlisting{math/ntt.cpp}
+ %\textcolor{safeOrange}{$\blacksquare$} NTT code, %\textcolor{safeGreen}{$\blacksquare$} FFT code
+ \sourcecode{math/transforms/all.cpp}
+ Multiplikation mit 2 transforms statt 3: (nur benutzten wenn nötig!)
+ \sourcecode{math/transforms/fftMul.cpp}
+\end{algorithm}
+
+\subsection{LGS über $\boldsymbol{\mathbb{R}}$}
+\method{gauss}{löst LGS}{n^3}
+\sourcecode{math/gauss.cpp}
+
+\subsection{LGS über $\boldsymbol{\mathbb{F}_p}$}
+\method{gauss}{löst LGS}{n^3}
+\sourcecode{math/lgsFp.cpp}
+
+\clearpage
+
+\subsection{Primzahlzählfunktion $\boldsymbol{\pi}$}
+\begin{methods}
+ \method{init}{berechnet $\pi$ bis $N$}{N\*\log(\log(N))}
+ \method{phi}{zählt zu $p_i$ teilerfremde Zahlen $\leq n$ für alle $i \leq k$}{???}
+ \method{pi}{zählt Primzahlen $\leq n$ ($n < N^2$)}{n^{2/3}}
+\end{methods}
+\sourcecode{math/piLehmer.cpp}
+
+\begin{algorithm}{Lineare-Recurenz}
+ \begin{methods}
+ \method{BerlekampMassey}{Berechnet eine lineare Recurenz $n$-ter Ordnung}{n^2}
+ \method{}{aus den ersten $2n$ Werte}{}
+ \end{methods}
+ \sourcecode{math/berlekampMassey.cpp}
+ Sei $f(n)=c_{n-1}f(n-1)+c_{n-2}f(n-2)+\dots + c_0f(0)$ eine lineare Recurenz.
+
+ \begin{methods}
+ \method{kthTerm}{Berechnet $k$-ten Term einer Recurenz $n$-ter Ordnung}{\log(k)\cdot n^2}
+ \end{methods}
+ \sourcecode{math/linearRecurence.cpp}
+ Alternativ kann der \mbox{$k$-te} Term in \runtime{n^3\log(k)} berechnet werden:
+ $$\renewcommand\arraystretch{1.5}
+ \setlength\arraycolsep{3pt}
+ \begin{pmatrix}
+ c_{n-1} & c_{n-2} & \smash{\cdots} & \smash{\cdots} & c_0 \\
+ 1 & 0 & \smash{\cdots} & \smash{\cdots} & 0 \\
+ 0 & \smash{\ddots} & \smash{\ddots} & & \smash{\vdots} \\
+ 0 & \smash{\ddots} & \smash{\ddots} & \smash{\ddots} & \smash{\vdots} \\
+ 0 & \smash{\cdots} & 0 & 1 & 0 \\
+ \end{pmatrix}^k
+ \times~~
+ \begin{pmatrix}
+ f(n-1) \\
+ f(n-2) \\
+ \smash{\vdots} \\
+ \smash{\vdots} \\
+ f(0) \\
+ \end{pmatrix}
+ ~~=~~
+ \begin{pmatrix}
+ f(n-1+k) \\
+ f(n-2+k) \\
+ \smash{\vdots} \\
+ \smash{\vdots} \\
+ f(k) \makebox[0pt][l]{\hspace{15pt}$\vcenter{\hbox{\huge$\leftarrow$}}$}\\
+ \end{pmatrix}
+ $$
+\end{algorithm}
+
+\begin{algorithm}{Matrix-Exponent}
+ \begin{methods}
+ \method{precalc}{berechnet $m^{2^b}$ vor}{\log(b)\*n^3}
+ \method{calc}{berechnet $m^b_{y,x}$}{\log(b)\cdot n^2}
+ \end{methods}
+ \sourcecode{math/matrixPower.cpp}
+\end{algorithm}
+
+\begin{algorithm}{\textsc{Legendre}-Symbol}
+ Sei $p \geq 3$ eine Primzahl, $a \in \mathbb{Z}$:
+ \begin{align*}
+ \legendre{a}{p} &=
+ \begin{cases*}
+ \hphantom{-}0 & falls $p~\vert~a$ \\[-1ex]
+ \hphantom{-}1 & falls $\exists x \in \mathbb{Z}\backslash p\mathbb{Z} : a \equiv x^2 \bmod p$ \\[-1ex]
+ -1 & sonst
+ \end{cases*} \\
+ \legendre{-1}{p} = (-1)^{\frac{p - 1}{2}} &=
+ \begin{cases*}
+ \hphantom{-}1 & falls $p \equiv 1 \bmod 4$ \\[-1ex]
+ -1 & falls $p \equiv 3 \bmod 4$
+ \end{cases*} \\
+ \legendre{2}{p} = (-1)^{\frac{p^2 - 1}{8}} &=
+ \begin{cases*}
+ \hphantom{-}1 & falls $p \equiv \pm 1 \bmod 8$ \\[-1ex]
+ -1 & falls $p \equiv \pm 3 \bmod 8$
+ \end{cases*}
+ \end{align*}
+ \begin{align*}
+ \legendre{p}{q} \cdot \legendre{q}{p} = (-1)^{\frac{p - 1}{2} \cdot \frac{q - 1}{2}} &&
+ \legendre{a}{p} \equiv a^{\frac{p-1}{2}}\bmod p
+ \end{align*}
+ \sourcecode{math/legendre.cpp}
+\end{algorithm}
+
+\begin{algorithm}{Inversionszahl}
+ \sourcecode{math/inversions.cpp}
+\end{algorithm}
+
+\subsection{Satz von \textsc{Sprague-Grundy}}
+Weise jedem Zustand $X$ wie folgt eine \textsc{Grundy}-Zahl $g\left(X\right)$ zu:
+\[
+g\left(X\right) := \min\left\{
+\mathbb{Z}_0^+ \setminus
+\left\{g\left(Y\right) \mid Y \text{ von } X \text{ aus direkt erreichbar}\right\}
+\right\}
+\]
+$X$ ist genau dann gewonnen, wenn $g\left(X\right) > 0$ ist.\\
+Wenn man $k$ Spiele in den Zuständen $X_1, \ldots, X_k$ hat, dann ist die \textsc{Grundy}-Zahl des Gesamtzustandes $g\left(X_1\right) \oplus \ldots \oplus g\left(X_k\right)$.
+
+\subsection{Kombinatorik}
+
+\paragraph{Wilsons Theorem}
+A number $n$ is prime if and only if
+$(n-1)!\equiv -1\bmod{n}$.\\
+($n$ is prime if and only if $(m-1)!\cdot(n-m)!\equiv(-1)^m\bmod{n}$ for all $m$ in $\{1,\dots,n\}$)
+\begin{align*}
+ (n-1)!\equiv\begin{cases}
+ -1\bmod{n},&\mathrm{falls}~n \in \mathbb{P}\\
+ \hphantom{-}2\bmod{n},&\mathrm{falls}~n = 4\\
+ \hphantom{-}0\bmod{n},&\mathrm{sonst}
+ \end{cases}
+\end{align*}
+
+\paragraph{\textsc{Zeckendorfs} Theorem}
+Jede positive natürliche Zahl kann eindeutig als Summe einer oder mehrerer
+verschiedener \textsc{Fibonacci}-Zahlen geschrieben werden, sodass keine zwei
+aufeinanderfolgenden \textsc{Fibonacci}-Zahlen in der Summe vorkommen.\\
+\emph{Lösung:} Greedy, nimm immer die größte \textsc{Fibonacci}-Zahl, die noch
+hineinpasst.
+
+\paragraph{\textsc{Lucas}-Theorem}
+Ist $p$ prim, $m=\sum_{i=0}^km_ip^i$, $n=\sum_{i=0}^kn_ip^i$ ($p$-adische Darstellung),
+so gilt
+\vspace{-0.75\baselineskip}
+\[
+ \binom{m}{n} \equiv \prod_{i=0}^k\binom{m_i}{n_i} \bmod{p}.
+\]
+
+%\begin{algorithm}{Binomialkoeffizienten}
+\paragraph{Binomialkoeffizienten}
+ Die Anzahl der \mbox{$k$-elementigen} Teilmengen einer \mbox{$n$-elementigen} Menge.
+ \begin{methods}
+ \method{precalc}{berechnet $n!$ und $n!^{-1}$ vor}{\mathit{lim}}
+ \method{calc\_binom}{berechnet Binomialkoeffizient}{1}
+ \end{methods}
+ \sourcecode{math/binomial0.cpp}
+ Falls $n >= p$ for $\mathit{mod}=p^k$ berechne \textit{fac} und \textit{inv} aber teile $p$ aus $i$ und berechne die häufigkeit von $p$ in $n!$ als $\sum\limits_{i=1}\big\lfloor\frac{n}{p^i}\big\rfloor$
+\columnbreak
+
+ \begin{methods}
+ \method{calc\_binom}{berechnet Binomialkoeffizient $(n \le 61)$}{k}
+ \end{methods}
+ \sourcecode{math/binomial1.cpp}
+
+ \begin{methods}
+ \method{calc\_binom}{berechnet Binomialkoeffizient modulo Primzahl $p$}{p-n}
+ \end{methods}
+ \sourcecode{math/binomial3.cpp}
+
+% \begin{methods}
+% \method{calc\_binom}{berechnet Primfaktoren vom Binomialkoeffizient}{n}
+% \end{methods}
+% \textbf{WICHTIG:} braucht alle Primzahlen $\leq n$
+% \sourcecode{math/binomial2.cpp}
+%\end{algorithm}
+
+\paragraph{\textsc{Catalan}-Zahlen}
+\begin{itemize}
+ \item Die \textsc{Catalan}-Zahl $C_n$ gibt an:
+ \begin{itemize}
+ \item Anzahl der Binärbäume mit $n$ nicht unterscheidbaren Knoten.
+ \item Anzahl der validen Klammerausdrücke mit $n$ Klammerpaaren.
+ \item Anzahl der korrekten Klammerungen von $n+1$ Faktoren.
+ \item Anzahl Möglichkeiten ein konvexes Polygon mit $n + 2$ Ecken zu triangulieren.
+ \item Anzahl der monotonen Pfade (zwischen gegenüberliegenden Ecken) in
+ einem $n \times n$-Gitter, die nicht die Diagonale kreuzen.
+ \end{itemize}
+\end{itemize}
+\[C_0 = 1\qquad C_n = \sum\limits_{k = 0}^{n - 1} C_kC_{n - 1 - k} =
+\frac{1}{n + 1}\binom{2n}{n} = \frac{4n - 2}{n+1} \cdot C_{n-1}\]
+\begin{itemize}
+ \item Formel $1$ erlaubt Berechnung ohne Division in \runtime{n^2}
+ \item Formel $2$ und $3$ erlauben Berechnung in \runtime{n}
+\end{itemize}
+
+\paragraph{\textsc{Catalan}-Convolution}
+\begin{itemize}
+ \item Anzahl an Klammerausdrücken mit $n+k$ Klammerpaaren, die mit $(^k$ beginnen.
+\end{itemize}
+\[C^k_0 = 1\qquad C^k_n = \sum\limits_{\mathclap{a_0+a_1+\dots+a_k=n}} C_{a_0}C_{a_1}\cdots C_{a_k} =
+\frac{k+1}{n+k+1}\binom{2n+k}{n} = \frac{(2n+k-1)\cdot(2n+k)}{n(n+k+1)} \cdot C_{n-1}\]
+
+\paragraph{\textsc{Euler}-Zahlen 1. Ordnung}
+Die Anzahl der Permutationen von $\{1, \ldots, n\}$ mit genau $k$ Anstiegen.
+Für die $n$-te Zahl gibt es $n$ mögliche Positionen zum Einfügen.
+Dabei wird entweder ein Anstieg in zwei gesplitted oder ein Anstieg um $n$ ergänzt.
+\[\eulerI{n}{0} = \eulerI{n}{n-1} = 1 \quad
+\eulerI{n}{k} = (k+1) \eulerI{n-1}{k} + (n-k) \eulerI{n-1}{k-1}=
+\sum_{i=0}^{k} (-1)^i\binom{n+1}{i}(k+1-i)^n\]
+\begin{itemize}
+ \item Formel $1$ erlaubt Berechnung ohne Division in \runtime{n^2}
+ \item Formel $2$ erlaubt Berechnung in \runtime{n\log(n)}
+\end{itemize}
+
+\paragraph{\textsc{Euler}-Zahlen 2. Ordnung}
+Die Anzahl der Permutationen von $\{1,1, \ldots, n,n\}$ mit genau $k$ Anstiegen.
+\[\eulerII{n}{0} = 1 \qquad\eulerII{n}{n} = 0 \qquad\eulerII{n}{k} = (k+1) \eulerII{n-1}{k} + (2n-k-1) \eulerII{n-1}{k-1}\]
+\begin{itemize}
+ \item Formel erlaubt Berechnung ohne Division in \runtime{n^2}
+\end{itemize}
+
+\paragraph{\textsc{Stirling}-Zahlen 1. Ordnung}
+Die Anzahl der Permutationen von $\{1, \ldots, n\}$ mit genau $k$ Zyklen.
+Es gibt zwei Möglichkeiten für die $n$-te Zahl. Entweder sie bildet einen eigene Zyklus, oder sie kann an jeder Position in jedem Zyklus einsortiert werden.
+\[\stirlingI{0}{0} = 1 \qquad
+\stirlingI{n}{0} = \stirlingI{0}{n} = 0 \qquad
+\stirlingI{n}{k} = \stirlingI{n-1}{k-1} + (n-1) \stirlingI{n-1}{k}\]
+\begin{itemize}
+ \item Formel erlaubt berechnung ohne Division in \runtime{n^2}
+\end{itemize}
+\[\sum_{k=0}^{n}\pm\stirlingI{n}{k}x^k=x(x-1)(x-2)\cdots(x-n+1)\]
+\begin{itemize}
+ \item Berechne Polynom mit FFT und benutzte betrag der Koeffizienten \runtime{n\log(n)^2} (nur ungefähr gleich große Polynome zusammen multiplizieren beginnend mit $x-k$)
+\end{itemize}
+
+\paragraph{\textsc{Stirling}-Zahlen 2. Ordnung}
+Die Anzahl der Möglichkeiten $n$ Elemente in $k$ nichtleere Teilmengen zu zerlegen.
+Es gibt $k$ Möglichkeiten die $n$ in eine $n-1$-Partition einzuordnen.
+Dazu kommt der Fall, dass die $n$ in ihrer eigenen Teilmenge (alleine) steht.
+\[\stirlingII{n}{1} = \stirlingII{n}{n} = 1 \qquad
+\stirlingII{n}{k} = k \stirlingII{n-1}{k} + \stirlingII{n-1}{k-1} =
+\frac{1}{k!} \sum\limits_{i=0}^{k} (-1)^{k-i}\binom{k}{i}i^n\]
+\begin{itemize}
+ \item Formel $1$ erlaubt Berechnung ohne Division in \runtime{n^2}
+ \item Formel $2$ erlaubt Berechnung in \runtime{n\log(n)}
+\end{itemize}
+
+\paragraph{\textsc{Bell}-Zahlen}
+Anzahl der Partitionen von $\{1, \ldots, n\}$.
+Wie \textsc{Stirling}-Zahlen 2. Ordnung ohne Limit durch $k$.
+\[B_1 = 1 \qquad
+B_n = \sum\limits_{k = 0}^{n - 1} B_k\binom{n-1}{k}
+= \sum\limits_{k = 0}^{n}\stirlingII{n}{k}\qquad\qquad B_{p^m+n}\equiv m\cdot B_n + B_{n+1} \bmod{p}\]
+
+\paragraph{Partitions}
+Die Anzahl der Partitionen von $n$ in genau $k$ positive Summanden.
+Die Anzahl der Partitionen von $n$ mit Elementen aus ${1,\dots,k}$.
+\begin{align*}
+ p_0(0)=1 \qquad p_k(n)&=0 \text{ für } k > n \text{ oder } n \leq 0 \text{ oder } k \leq 0\\
+ p_k(n)&= p_k(n-k) + p_{k-1}(n-1)\\[2pt]
+ p(n)&=\sum_{k=1}^{n} p_k(n)=p_n(2n)=\sum\limits_{k\neq0}^\infty(-1)^{k+1}p\bigg(n - \frac{k(3k-1)}{2}\bigg)
+\end{align*}
+\begin{itemize}
+ \item in Formel $3$ kann abgebrochen werden wenn $\frac{k(3k-1)}{2} > n$.
+ \item Die Anzahl der Partitionen von $n$ in bis zu $k$ positive Summanden ist $\sum\limits_{i=0}^{k}p_i(n)=p_k(n+k)$.
+\end{itemize}
+
+\subsection{The Twelvefold Way \textnormal{(verteile $n$ Bälle auf $k$ Boxen)}}
+\input{math/tables/twelvefold}
+
+%\input{math/tables/numbers}
+
+\begin{algorithm}[optional]{Big Integers}
+ \sourcecode{math/bigint.cpp}
+\end{algorithm}
diff --git a/math/shortModInv.cpp b/math/shortModInv.cpp new file mode 100644 index 0000000..747eb7a --- /dev/null +++ b/math/shortModInv.cpp @@ -0,0 +1,3 @@ +ll inv(ll a, ll b){ // a^{-1} mod b + return 1 < a ? b - inv(b % a, a) * b / a : 1; +}
\ No newline at end of file |
