summaryrefslogtreecommitdiff
path: root/math/tables
diff options
context:
space:
mode:
authormzuenni <mzuenni@users.noreply.github.com>2024-07-28 22:54:40 +0200
committerGitHub <noreply@github.com>2024-07-28 22:54:40 +0200
commit8d11c6c8213f46f0fa19826917c255edd5d43cb1 (patch)
tree96d75baff33d5a04b5a60f1a41f514a26c716874 /math/tables
parent8c33b4e0d3030cfed17fc64b4fe41133339f6d87 (diff)
Test (#4)
* update * moved content in subdir * rename file * add test setup * add test setup * add github action * automaticly test all cpp files * timeout after 10s * setulimit and dont zero memory * test build pdf * install latexmk * update * update * ngerman * fonts * removed old code * add first test * added tests * test in sorted order * more tests * simplified test * more tests * fix suffix tree * fixes and improvements * done ust lst directly * fix swap * add links to pdf * fix constants * add primorial * add comment * various improvements * more tests * added missing stuf * more tests * fix tests * more tests * more tests * more tests * fix recursion? * test trie * more tests * only use python temporarily for listings * only use python temporarily for listings * more tests * fix longestCommonSubstring * more tests * more tests * made code more similiar * fix? * more tests * more tests * more tests * add ahoCorasick test + limit 4GB stack size * more tests * fix test * add additional test * more tests * more tests * fix? * better fix * fix virtual tree * more tests * more tests * recursive closest pair * more tests * decrease limit * new tests * more tests * fix name * more tests * add test * new test * more tests * more tests * more tests * more tests * new test and content * new code * new code * larger tests * fix and test * new test * new test * update pdf * remove comments * new test * more tests * more testcases * more tests * increased limit * more tests * more tests * more tests * new tests * more tests * shortened code * new test * add basic tests for bigint * more tests * removed old files * new test * ignore some files * more auto more ccw * fix test * more tests * fix * new tests * more tests * more tests * stronger test * actually verify delaunay... * more tests * fix header * more tests * run tests parallel? * test parralel? * add --missing * separate workflows * test * is the pdf checked? * separate workflows * fix workflow * more workflows --------- Co-authored-by: Yidi <noob999noob999@gmail.com>
Diffstat (limited to 'math/tables')
-rw-r--r--math/tables/binom.tex28
-rw-r--r--math/tables/composite.tex27
-rw-r--r--math/tables/nim.tex96
-rw-r--r--math/tables/numbers.tex59
-rw-r--r--math/tables/platonic.tex39
-rw-r--r--math/tables/probability.tex27
-rw-r--r--math/tables/series.tex33
-rw-r--r--math/tables/stuff.tex32
-rw-r--r--math/tables/twelvefold.tex32
9 files changed, 0 insertions, 373 deletions
diff --git a/math/tables/binom.tex b/math/tables/binom.tex
deleted file mode 100644
index 878a6b0..0000000
--- a/math/tables/binom.tex
+++ /dev/null
@@ -1,28 +0,0 @@
-\begin{tabularx}{\linewidth}{|XXXX|}
- \hline
- \multicolumn{4}{|c|}{Binomialkoeffizienten} \\
- \hline
- \multicolumn{4}{|c|}{
- $\frac{n!}{k!(n - k)!} \hfill=\hfill
- \binom{n}{k} \hfill=\hfill
- \binom{n}{n - k} \hfill=\hfill
- \frac{n}{k}\binom{n - 1}{k - 1} \hfill=\hfill
- \frac{n-k+1}{k}\binom{n}{k - 1} \hfill=\hfill
- \binom{n - 1}{k} + \binom{n - 1}{k - 1} \hfill=\hfill
- (-1)^k \binom{k - n - 1}{k} \hfill\approx\hfill
- 2^{n} \cdot \frac{2}{\sqrt{2\pi n}}\cdot\exp\left(-\frac{2(x - \frac{n}{2})^2}{n}\right)$
- } \\
- \grayhline
-
- $\sum\limits_{k = 0}^n \binom{n}{k} = 2^n$ &
- $\sum\limits_{k = 0}^n \binom{k}{m} = \binom{n + 1}{m + 1}$ &
- $\sum\limits_{i = 0}^n \binom{n}{i}^2 = \binom{2n}{n}$ &
- $\sum\limits_{k = 0}^n\binom{r + k}{k} = \binom{r + n + 1}{n}$\\
-
- $\binom{n}{m}\binom{m}{k} = \binom{n}{k}\binom{n - k}{m - k}$ &
- $\sum\limits_{k = 0}^n \binom{r}{k}\binom{s}{n - k} = \binom{r + s}{n}$ &
- \multicolumn{2}{l|}{
- $\sum\limits_{i = 1}^n \binom{n}{i} F_i = F_{2n} \quad F_n = n\text{-th Fib.}$
- }\\
- \hline
-\end{tabularx}
diff --git a/math/tables/composite.tex b/math/tables/composite.tex
deleted file mode 100644
index 8e14b2e..0000000
--- a/math/tables/composite.tex
+++ /dev/null
@@ -1,27 +0,0 @@
-
-\begin{tabularx}{\linewidth}{|r||r|r||r|r|r||C|}
- \hline
- \multicolumn{7}{|c|}{Important Numbers} \\
- \hline
- $10^x$ & Highly Composite & \# Divs & $<$ Prime & $>$ Prime & \# Primes & \\
- \hline
- 1 & 6 & 4 & $-3$ & $+1$ & 4 & \\
- 2 & 60 & 12 & $-3$ & $+1$ & 25 & \\
- 3 & 840 & 32 & $-3$ & $+9$ & 168 & \\
- 4 & 7\,560 & 64 & $-27$ & $+7$ & 1\,229 & \\
- 5 & 83\,160 & 128 & $-9$ & $+3$ & 9\,592 & \\
- 6 & 720\,720 & 240 & $-17$ & $+3$ & 78\,498 & \\
- 7 & 8\,648\,640 & 448 & $-9$ & $+19$ & 664\,579 & \\
- 8 & 73\,513\,440 & 768 & $-11$ & $+7$ & 5\,761\,455 & \\
- 9 & 735\,134\,400 & 1\,344 & $-63$ & $+7$ & 50\,847\,534 & \\
- 10 & 6\,983\,776\,800 & 2\,304 & $-33$ & $+19$ & 455\,052\,511 & \\
- 11 & 97\,772\,875\,200 & 4\,032 & $-23$ & $+3$ & 4\,118\,054\,813 & \\
- 12 & 963\,761\,198\,400 & 6\,720 & $-11$ & $+39$ & 37\,607\,912\,018 & \\
- 13 & 9\,316\,358\,251\,200 & 10\,752 & $-29$ & $+37$ & 346\,065\,536\,839 & \\
- 14 & 97\,821\,761\,637\,600 & 17\,280 & $-27$ & $+31$ & 3\,204\,941\,750\,802 & \\
- 15 & 866\,421\,317\,361\,600 & 26\,880 & $-11$ & $+37$ & 29\,844\,570\,422\,669 & \\
- 16 & 8\,086\,598\,962\,041\,600 & 41\,472 & $-63$ & $+61$ & 279\,238\,341\,033\,925 & \\
- 17 & 74\,801\,040\,398\,884\,800 & 64\,512 & $-3$ & $+3$ & 2\,623\,557\,157\,654\,233 & \\
- 18 & 897\,612\,484\,786\,617\,600 & 103\,680 & $-11$ & $+3$ & 24\,739\,954\,287\,740\,860 & \\
- \hline
-\end{tabularx}
diff --git a/math/tables/nim.tex b/math/tables/nim.tex
deleted file mode 100644
index 8490d42..0000000
--- a/math/tables/nim.tex
+++ /dev/null
@@ -1,96 +0,0 @@
-\begin{tabularx}{\linewidth}{|p{0.37\linewidth}|X|}
- \hline
- \multicolumn{2}{|c|}{Nim-Spiele (\ding{182} letzter gewinnt (normal), \ding{183} letzter verliert)} \\
- \hline
- Beschreibung &
- Strategie \\
- \hline
-
- $M = [\mathit{pile}_i]$\newline
- $[x] := \{1, \ldots, x\}$&
- $\mathit{SG} = \oplus_{i = 1}^n \mathit{pile}_i$\newline
- \ding{182} Nimm von einem Stapel, sodass $\mathit{SG}$ $0$ wird.\newline
- \ding{183} Genauso.
- Außer: Bleiben nur noch Stapel der Größe $1$, erzeuge ungerade Anzahl solcher Stapel.\\
- \hline
-
- $M = \{a^m \mid m \geq 0\}$ &
- $a$ ungerade: $\mathit{SG}_n = n \% 2$\newline
- $a$ gerade:\newline
- $\mathit{SG}_n = 2$, falls $n \equiv a \bmod (a + 1) $\newline
- $\mathit{SG}_n = n \% (a + 1) \% 2$, sonst.\\
- \hline
-
- $M_{\text{\ding{172}}} = \left[\frac{\mathit{pile}_i}{2}\right]$\newline
- $M_{\text{\ding{173}}} =
- \left\{\left\lceil\frac{\mathit{pile}_i}{2}\right\rceil,~
- \mathit{pile}_i\right\}$ &
- \ding{172}
- $\mathit{SG}_{2n} = n$,
- $\mathit{SG}_{2n+1} = \mathit{SG}_n$\newline
- \ding{173}
- $\mathit{SG}_0 = 0$,
- $\mathit{SG}_n = [\log_2 n] + 1$ \\
- \hline
-
- $M_{\text{\ding{172}}} = \text{Teiler von $\mathit{pile}_i$}$\newline
- $M_{\text{\ding{173}}} = \text{echte Teiler von $\mathit{pile}_i$}$ &
- \ding{172}
- $\mathit{SG}_0 = 0$,
- $\mathit{SG}_n = \mathit{SG}_{\text{\ding{173},n}} + 1$\newline
- \ding{173}
- $\mathit{ST}_1 = 0$,
- $\mathit{SG}_n = \text{\#Nullen am Ende von $n_{bin}$}$\\
- \hline
-
- $M_{\text{\ding{172}}} = [k]$\newline
- $M_{\text{\ding{173}}} = S$, ($S$ endlich)\newline
- $M_{\text{\ding{174}}} = S \cup \{\mathit{pile}_i\}$ &
- $\mathit{SG}_{\text{\ding{172}}, n} = n \bmod (k + 1)$\newline
- \ding{182} Niederlage bei $\mathit{SG} = 0$\newline
- \ding{183} Niederlage bei $\mathit{SG} = 1$\newline
- $\mathit{SG}_{\text{\ding{174}}, n} = \mathit{SG}_{\text{\ding{173}}, n} + 1$\\
- \hline
-
- \multicolumn{2}{|l|}{
- Für jedes endliche $M$ ist $\mathit{SG}$ eines Stapels irgendwann periodisch.
- } \\
- \hline
-
- \textsc{Moore}'s Nim:\newline
- Beliebige Zahl von maximal $k$ Stapeln. &
- \ding{182}
- Schreibe $\mathit{pile}_i$ binär.
- Addiere ohne Übertrag zur Basis $k + 1$.
- Niederlage, falls Ergebnis gleich 0.\newline
- \ding{183}
- Wenn alle Stapel $1$ sind:
- Niederlage, wenn $n \equiv 1 \bmod (k + 1)$.
- Sonst wie in \ding{182}.\\
- \hline
-
- Staircase Nim:\newline
- $n$ Stapel in einer Reihe.
- Beliebige Zahl von Stapel $i$ nach Stapel $i-1$. &
- Niederlage, wenn Nim der ungeraden Spiele verloren ist:\newline
- $\oplus_{i = 0}^{(n - 1) / 2} \mathit{pile}_{2i + 1} = 0$\\
- \hline
-
- \textsc{Lasker}'s Nim:\newline
- Zwei mögliche Züge:\newline
- 1) Nehme beliebige Zahl.\newline
- 2) Teile Stapel in zwei Stapel (ohne Entnahme).&
- $\mathit{SG}_n = n$, falls $n \equiv 1,2 \bmod 4$\newline
- $\mathit{SG}_n = n + 1$, falls $n \equiv 3 \bmod 4$\newline
- $\mathit{SG}_n = n - 1$, falls $n \equiv 0 \bmod 4$\\
- \hline
-
- \textsc{Kayles}' Nim:\newline
- Zwei mögliche Züge:\newline
- 1) Nehme beliebige Zahl.\newline
- 2) Teile Stapel in zwei Stapel (mit Entnahme).&
- Berechne $\mathit{SG}_n$ für kleine $n$ rekursiv.\newline
- $n \in [72,83]: \quad 4, 1, 2, 8, 1, 4, 7, 2, 1, 8, 2, 7$\newline
- Periode ab $n = 72$ der Länge $12$.\\
- \hline
-\end{tabularx}
diff --git a/math/tables/numbers.tex b/math/tables/numbers.tex
deleted file mode 100644
index 1dc9f38..0000000
--- a/math/tables/numbers.tex
+++ /dev/null
@@ -1,59 +0,0 @@
-\begin{expandtable}
-\begin{tabularx}{\linewidth}{|l|X|}
- \hline
- \multicolumn{2}{|c|}{Berühmte Zahlen} \\
- \hline
- \textsc{Fibonacci} &
- $f(0) = 0 \quad
- f(1) = 1 \quad
- f(n+2) = f(n+1) + f(n)$ \\
- \grayhline
-
- \textsc{Catalan} &
- $C_0 = 1 \qquad
- C_n = \sum\limits_{k = 0}^{n - 1} C_kC_{n - 1 - k} =
- \frac{1}{n + 1}\binom{2n}{n} = \frac{2(2n - 1)}{n+1} \cdot C_{n-1}$ \\
- \grayhline
-
- \textsc{Euler} I &
- $\eulerI{n}{0} = \eulerI{n}{n-1} = 1 \qquad
- \eulerI{n}{k} = (k+1) \eulerI{n-1}{k} + (n-k) \eulerI{n-1}{k-1} $ \\
- \grayhline
-
- \textsc{Euler} II &
- $\eulerII{n}{0} = 1 \quad
- \eulerII{n}{n} = 0 \quad$\\
- & $\eulerII{n}{k} = (k+1) \eulerII{n-1}{k} + (2n-k-1) \eulerII{n-1}{k-1}$ \\
- \grayhline
-
- \textsc{Stirling} I &
- $\stirlingI{0}{0} = 1 \qquad
- \stirlingI{n}{0} = \stirlingI{0}{n} = 0 \qquad
- \stirlingI{n}{k} = \stirlingI{n-1}{k-1} + (n-1) \stirlingI{n-1}{k}$ \\
- \grayhline
-
- \textsc{Stirling} II &
- $\stirlingII{n}{1} = \stirlingII{n}{n} = 1 \qquad
- \stirlingII{n}{k} = k \stirlingII{n-1}{k} + \stirlingII{n-1}{k-1} =
- \frac{1}{k!} \sum\limits_{j=0}^{k} (-1)^{k-j}\binom{k}{j}j^n$\\
- \grayhline
-
- \textsc{Bell} &
- $B_1 = 1 \qquad
- B_n = \sum\limits_{k = 0}^{n - 1} B_k\binom{n-1}{k}
- = \sum\limits_{k = 0}^{n}\stirlingII{n}{k}$\\
- \grayhline
-
- \textsc{Partitions} &
- $p(0,0) = 1 \quad
- p(n,k) = 0 \text{ für } k > n \text{ oder } n \leq 0 \text{ oder } k \leq 0$ \\
- & $p(n,k) = p(n-k,k) + p(n-1,k-1)$\\
- \grayhline
-
- \textsc{Partitions} &
- $f(0) = 1 \quad f(n) = 0~(n < 0)$ \\
- & $f(n)=\sum\limits_{k=1}^\infty(-1)^{k-1}f(n - \frac{k(3k+1)}{2})+\sum\limits_{k=1}^\infty(-1)^{k-1}f(n - \frac{k(3k-1)}{2})$\\
-
- \hline
-\end{tabularx}
-\end{expandtable}
diff --git a/math/tables/platonic.tex b/math/tables/platonic.tex
deleted file mode 100644
index f4ee554..0000000
--- a/math/tables/platonic.tex
+++ /dev/null
@@ -1,39 +0,0 @@
-\begin{tabularx}{\linewidth}{|X|CCCX|}
- \hline
- \multicolumn{5}{|c|}{Platonische Körper} \\
- \hline
- Übersicht & Seiten & Ecken & Kanten & dual zu \\
- \hline
- Tetraeder & 4 & 4 & 6 & Tetraeder \\
- Würfel/Hexaeder & 6 & 8 & 12 & Oktaeder \\
- Oktaeder & 8 & 6 & 12 & Würfel/Hexaeder\\
- Dodekaeder & 12 & 20 & 30 & Ikosaeder \\
- Ikosaeder & 20 & 12 & 30 & Dodekaeder \\
- \hline
- \multicolumn{5}{|c|}{Färbungen mit maximal $n$ Farben (bis auf Isomorphie)} \\
- \hline
- \multicolumn{3}{|l}{Ecken vom Oktaeder/Seiten vom Würfel} &
- \multicolumn{2}{l|}{$(n^6 + 3n^4 + 12n^3 + 8n^2)/24$} \\
-
- \multicolumn{3}{|l}{Ecken vom Würfel/Seiten vom Oktaeder} &
- \multicolumn{2}{l|}{$(n^8 + 17n^4 + 6n^2)/24$} \\
-
- \multicolumn{3}{|l}{Kanten vom Würfel/Oktaeder} &
- \multicolumn{2}{l|}{$(n^{12} + 6n^7 + 3n^6 + 8n^4 + 6n^3)/24$} \\
-
- \multicolumn{3}{|l}{Ecken/Seiten vom Tetraeder} &
- \multicolumn{2}{l|}{$(n^4 + 11n^2)/12$} \\
-
- \multicolumn{3}{|l}{Kanten vom Tetraeder} &
- \multicolumn{2}{l|}{$(n^6 + 3n^4 + 8n^2)/12$} \\
-
- \multicolumn{3}{|l}{Ecken vom Ikosaeder/Seiten vom Dodekaeder} &
- \multicolumn{2}{l|}{$(n^{12} + 15n^6 + 44n^4)/60$} \\
-
- \multicolumn{3}{|l}{Ecken vom Dodekaeder/Seiten vom Ikosaeder} &
- \multicolumn{2}{l|}{$(n^{20} + 15n^{10} + 20n^8 + 24n^4)/60$} \\
-
- \multicolumn{3}{|l}{Kanten vom Dodekaeder/Ikosaeder (evtl. falsch)} &
- \multicolumn{2}{l|}{$(n^{30} + 15n^{16} + 20n^{10} + 24n^6)/60$} \\
- \hline
-\end{tabularx}
diff --git a/math/tables/probability.tex b/math/tables/probability.tex
deleted file mode 100644
index f265d10..0000000
--- a/math/tables/probability.tex
+++ /dev/null
@@ -1,27 +0,0 @@
-\begin{tabularx}{\linewidth}{|LICIR|}
- \hline
- \multicolumn{3}{|c|}{
- Wahrscheinlichkeitstheorie ($A,B$ Ereignisse und $X,Y$ Variablen)
- } \\
- \hline
- $\E(X + Y) = \E(X) + \E(Y)$ &
- $\E(\alpha X) = \alpha \E(X)$ &
- $X, Y$ unabh. $\Leftrightarrow \E(XY) = \E(X) \cdot \E(Y)$\\
-
- $\Pr[A \vert B] = \frac{\Pr[A \land B]}{\Pr[B]}$ &
- $A, B$ disj. $\Leftrightarrow \Pr[A \land B] = \Pr[A] \cdot \Pr[B]$ &
- $\Pr[A \lor B] = \Pr[A] + \Pr[B] - \Pr[A \land B]$ \\
- \hline
-\end{tabularx}
-\vfill
-\begin{tabularx}{\linewidth}{|Xlr|lrX|}
- \hline
- \multicolumn{6}{|c|}{\textsc{Bertrand}'s Ballot Theorem (Kandidaten $A$ und $B$, $k \in \mathbb{N}$)} \\
- \hline
- & $\#A > k\#B$ & $Pr = \frac{a - kb}{a + b}$ &
- $\#B - \#A \leq k$ & $Pr = 1 - \frac{a!b!}{(a + k + 1)!(b - k - 1)!}$ & \\
-
- & $\#A \geq k\#B$ & $Pr = \frac{a + 1 - kb}{a + 1}$ &
- $\#A \geq \#B + k$ & $Num = \frac{a - k + 1 - b}{a - k + 1} \binom{a + b - k}{b}$ & \\
- \hline
-\end{tabularx}
diff --git a/math/tables/series.tex b/math/tables/series.tex
deleted file mode 100644
index 3042781..0000000
--- a/math/tables/series.tex
+++ /dev/null
@@ -1,33 +0,0 @@
-\begin{tabularx}{\linewidth}{|XIXIXIX|}
- \hline
- \multicolumn{4}{|c|}{Reihen} \\
- \hline
- $\sum\limits_{i = 1}^n i = \frac{n(n+1)}{2}$ &
- $\sum\limits_{i = 1}^n i^2 = \frac{n(n + 1)(2n + 1)}{6}$ &
- $\sum\limits_{i = 1}^n i^3 = \frac{n^2 (n + 1)^2}{4}$ &
- $H_n = \sum\limits_{i = 1}^n \frac{1}{i}$ \\
- \grayhline
-
- $\sum\limits_{i = 0}^n c^i = \frac{c^{n + 1} - 1}{c - 1} \quad c \neq 1$ &
- $\sum\limits_{i = 0}^\infty c^i = \frac{1}{1 - c} \quad \vert c \vert < 1$ &
- $\sum\limits_{i = 1}^\infty c^i = \frac{c}{1 - c} \quad \vert c \vert < 1$ &
- $\sum\limits_{i = 0}^\infty ic^i = \frac{c}{(1 - c)^2} \quad \vert c \vert < 1$ \\
- \grayhline
-
- \multicolumn{2}{|lI}{
- $\sum\limits_{i = 0}^n ic^i = \frac{nc^{n + 2} - (n + 1)c^{n + 1} + c}{(c - 1)^2} \quad c \neq 1$
- } &
- \multicolumn{2}{l|}{
- $\sum\limits_{i = 1}^n iH_i = \frac{n(n + 1)}{2}H_n - \frac{n(n - 1)}{4}$
- } \\
- \grayhline
-
- \multicolumn{2}{|lI}{
- $\sum\limits_{i = 1}^n H_i = (n + 1)H_n - n$
- } &
- \multicolumn{2}{l|}{
- $\sum\limits_{i = 1}^n \binom{i}{m}H_i =
- \binom{n + 1}{m + 1} \left(H_{n + 1} - \frac{1}{m + 1}\right)$
- } \\
- \hline
-\end{tabularx}
diff --git a/math/tables/stuff.tex b/math/tables/stuff.tex
deleted file mode 100644
index 5b5093e..0000000
--- a/math/tables/stuff.tex
+++ /dev/null
@@ -1,32 +0,0 @@
-\begin{tabularx}{\linewidth}{|ll|}
- \hline
- \multicolumn{2}{|C|}{Verschiedenes} \\
- \hline
- Türme von Hanoi, minimale Schirttzahl: &
- $T_n = 2^n - 1$ \\
-
- \#Regionen zwischen $n$ Geraden &
- $\frac{n\left(n + 1\right)}{2} + 1$ \\
-
- \#abgeschlossene Regionen zwischen $n$ Geraden &
- $\frac{n^2 - 3n + 2}{2}$ \\
-
- \#markierte, gewurzelte Bäume &
- $n^{n-1}$ \\
-
- \#markierte, nicht gewurzelte Bäume &
- $n^{n-2}$ \\
-
- \#Wälder mit $k$ gewurzelten Bäumen &
- $\frac{k}{n}\binom{n}{k}n^{n-k}$ \\
-
- \#Wälder mit $k$ gewurzelten Bäumen mit vorgegebenen Wurzelknoten&
- $\frac{k}{n}n^{n-k}$ \\
-
- Dearangements &
- $!n = (n - 1)(!(n - 1) + !(n - 2)) = \left\lfloor\frac{n!}{e} + \frac{1}{2}\right\rfloor$ \\
- &
- $\lim\limits_{n \to \infty} \frac{!n}{n!} = \frac{1}{e}$ \\
- \hline
-\end{tabularx}
-
diff --git a/math/tables/twelvefold.tex b/math/tables/twelvefold.tex
deleted file mode 100644
index 18d3955..0000000
--- a/math/tables/twelvefold.tex
+++ /dev/null
@@ -1,32 +0,0 @@
-\begin{expandtable}
-\begin{tabularx}{\linewidth}{|C|CICICIC|}
- \hline
- Bälle & identisch & verschieden & identisch & verschieden \\
- Boxen & identisch & identisch & verschieden & verschieden \\
- \hline
- -- &
- $p_k(n + k)$ &
- $\sum\limits_{i = 0}^k \stirlingII{n}{i}$ &
- $\binom{n + k - 1}{k - 1}$ &
- $k^n$ \\
- \grayhline
-
- \makecell{Bälle pro\\Box $\geq 1$} &
- $p_k(n)$ &
- $\stirlingII{n}{k}$ &
- $\binom{n - 1}{k - 1}$ &
- $k! \stirlingII{n}{k}$ \\
- \grayhline
-
- \makecell{Bälle pro\\Box $\leq 1$} &
- $[n \leq k]$ &
- $[n \leq k]$ &
- $\binom{k}{n}$ &
- $n! \binom{k}{n}$ \\
- \hline
- \multicolumn{5}{|l|}{
- $[\text{Bedingung}]$: \code{return Bedingung ? 1 : 0;}
- } \\
- \hline
-\end{tabularx}
-\end{expandtable}