summaryrefslogtreecommitdiff
path: root/math/tables/nim.tex
diff options
context:
space:
mode:
authorGloria Mundi <gloria@gloria-mundi.eu>2024-11-16 01:24:14 +0100
committerGloria Mundi <gloria@gloria-mundi.eu>2024-11-16 01:24:14 +0100
commit98567ec798aa8ca2cfbcb85c774dd470f30e30d4 (patch)
tree5113d5cc24d1ad5f93810b6442ce584a36950dc8 /math/tables/nim.tex
parentad3856a6b766087df0036de0b556f4700a6498c9 (diff)
parent8d11c6c8213f46f0fa19826917c255edd5d43cb1 (diff)
mzuenni tests
Diffstat (limited to 'math/tables/nim.tex')
-rw-r--r--math/tables/nim.tex96
1 files changed, 0 insertions, 96 deletions
diff --git a/math/tables/nim.tex b/math/tables/nim.tex
deleted file mode 100644
index 8490d42..0000000
--- a/math/tables/nim.tex
+++ /dev/null
@@ -1,96 +0,0 @@
-\begin{tabularx}{\linewidth}{|p{0.37\linewidth}|X|}
- \hline
- \multicolumn{2}{|c|}{Nim-Spiele (\ding{182} letzter gewinnt (normal), \ding{183} letzter verliert)} \\
- \hline
- Beschreibung &
- Strategie \\
- \hline
-
- $M = [\mathit{pile}_i]$\newline
- $[x] := \{1, \ldots, x\}$&
- $\mathit{SG} = \oplus_{i = 1}^n \mathit{pile}_i$\newline
- \ding{182} Nimm von einem Stapel, sodass $\mathit{SG}$ $0$ wird.\newline
- \ding{183} Genauso.
- Außer: Bleiben nur noch Stapel der Größe $1$, erzeuge ungerade Anzahl solcher Stapel.\\
- \hline
-
- $M = \{a^m \mid m \geq 0\}$ &
- $a$ ungerade: $\mathit{SG}_n = n \% 2$\newline
- $a$ gerade:\newline
- $\mathit{SG}_n = 2$, falls $n \equiv a \bmod (a + 1) $\newline
- $\mathit{SG}_n = n \% (a + 1) \% 2$, sonst.\\
- \hline
-
- $M_{\text{\ding{172}}} = \left[\frac{\mathit{pile}_i}{2}\right]$\newline
- $M_{\text{\ding{173}}} =
- \left\{\left\lceil\frac{\mathit{pile}_i}{2}\right\rceil,~
- \mathit{pile}_i\right\}$ &
- \ding{172}
- $\mathit{SG}_{2n} = n$,
- $\mathit{SG}_{2n+1} = \mathit{SG}_n$\newline
- \ding{173}
- $\mathit{SG}_0 = 0$,
- $\mathit{SG}_n = [\log_2 n] + 1$ \\
- \hline
-
- $M_{\text{\ding{172}}} = \text{Teiler von $\mathit{pile}_i$}$\newline
- $M_{\text{\ding{173}}} = \text{echte Teiler von $\mathit{pile}_i$}$ &
- \ding{172}
- $\mathit{SG}_0 = 0$,
- $\mathit{SG}_n = \mathit{SG}_{\text{\ding{173},n}} + 1$\newline
- \ding{173}
- $\mathit{ST}_1 = 0$,
- $\mathit{SG}_n = \text{\#Nullen am Ende von $n_{bin}$}$\\
- \hline
-
- $M_{\text{\ding{172}}} = [k]$\newline
- $M_{\text{\ding{173}}} = S$, ($S$ endlich)\newline
- $M_{\text{\ding{174}}} = S \cup \{\mathit{pile}_i\}$ &
- $\mathit{SG}_{\text{\ding{172}}, n} = n \bmod (k + 1)$\newline
- \ding{182} Niederlage bei $\mathit{SG} = 0$\newline
- \ding{183} Niederlage bei $\mathit{SG} = 1$\newline
- $\mathit{SG}_{\text{\ding{174}}, n} = \mathit{SG}_{\text{\ding{173}}, n} + 1$\\
- \hline
-
- \multicolumn{2}{|l|}{
- Für jedes endliche $M$ ist $\mathit{SG}$ eines Stapels irgendwann periodisch.
- } \\
- \hline
-
- \textsc{Moore}'s Nim:\newline
- Beliebige Zahl von maximal $k$ Stapeln. &
- \ding{182}
- Schreibe $\mathit{pile}_i$ binär.
- Addiere ohne Übertrag zur Basis $k + 1$.
- Niederlage, falls Ergebnis gleich 0.\newline
- \ding{183}
- Wenn alle Stapel $1$ sind:
- Niederlage, wenn $n \equiv 1 \bmod (k + 1)$.
- Sonst wie in \ding{182}.\\
- \hline
-
- Staircase Nim:\newline
- $n$ Stapel in einer Reihe.
- Beliebige Zahl von Stapel $i$ nach Stapel $i-1$. &
- Niederlage, wenn Nim der ungeraden Spiele verloren ist:\newline
- $\oplus_{i = 0}^{(n - 1) / 2} \mathit{pile}_{2i + 1} = 0$\\
- \hline
-
- \textsc{Lasker}'s Nim:\newline
- Zwei mögliche Züge:\newline
- 1) Nehme beliebige Zahl.\newline
- 2) Teile Stapel in zwei Stapel (ohne Entnahme).&
- $\mathit{SG}_n = n$, falls $n \equiv 1,2 \bmod 4$\newline
- $\mathit{SG}_n = n + 1$, falls $n \equiv 3 \bmod 4$\newline
- $\mathit{SG}_n = n - 1$, falls $n \equiv 0 \bmod 4$\\
- \hline
-
- \textsc{Kayles}' Nim:\newline
- Zwei mögliche Züge:\newline
- 1) Nehme beliebige Zahl.\newline
- 2) Teile Stapel in zwei Stapel (mit Entnahme).&
- Berechne $\mathit{SG}_n$ für kleine $n$ rekursiv.\newline
- $n \in [72,83]: \quad 4, 1, 2, 8, 1, 4, 7, 2, 1, 8, 2, 7$\newline
- Periode ab $n = 72$ der Länge $12$.\\
- \hline
-\end{tabularx}