diff options
| author | Gloria Mundi <gloria@gloria-mundi.eu> | 2024-11-16 01:24:14 +0100 |
|---|---|---|
| committer | Gloria Mundi <gloria@gloria-mundi.eu> | 2024-11-16 01:24:14 +0100 |
| commit | 98567ec798aa8ca2cfbcb85c774dd470f30e30d4 (patch) | |
| tree | 5113d5cc24d1ad5f93810b6442ce584a36950dc8 /math/piLehmer.cpp | |
| parent | ad3856a6b766087df0036de0b556f4700a6498c9 (diff) | |
| parent | 8d11c6c8213f46f0fa19826917c255edd5d43cb1 (diff) | |
mzuenni tests
Diffstat (limited to 'math/piLehmer.cpp')
| -rw-r--r-- | math/piLehmer.cpp | 52 |
1 files changed, 0 insertions, 52 deletions
diff --git a/math/piLehmer.cpp b/math/piLehmer.cpp deleted file mode 100644 index 56c172d..0000000 --- a/math/piLehmer.cpp +++ /dev/null @@ -1,52 +0,0 @@ -constexpr ll cacheA = 2 * 3 * 5 * 7 * 11 * 13 * 17;
-constexpr ll cacheB = 7;
-ll memoA[cacheA + 1][cacheB + 1];
-ll memoB[cacheB + 1];
-ll memoC[N];
-
-void init() {
- primeSieve(); // code from above
- for (ll i = 0; i < N; i++) {
- memoC[i] = memoC[i - 1];
- if (isPrime(i)) memoC[i]++;
- }
- memoB[0] = 1;
- for(ll i = 0; i <= cacheA; i++) memoA[i][0] = i;
- for(ll i = 1; i <= cacheB; i++) {
- memoB[i] = primes[i - 1] * memoB[i - 1];
- for(ll j = 1; j <= cacheA; j++) {
- memoA[j][i] = memoA[j][i - 1] - memoA[j /
- primes[i - 1]][i - 1];
-}}}
-
-ll phi(ll n, ll k) {
- if(k == 0) return n;
- if(k <= cacheB)
- return memoA[n % memoB[k]][k] +
- (n / memoB[k]) * memoA[memoB[k]][k];
- if(n <= primes[k - 1]*primes[k - 1]) return memoC[n] - k + 1;
- if(n <= primes[k - 1]*primes[k - 1]*primes[k - 1] && n < N) {
- ll b = memoC[(ll)sqrtl(n)];
- ll res = memoC[n] - (b + k - 2) * (b - k + 1) / 2;
- for(ll i = k; i < b; i++) res += memoC[n / primes[i]];
- return res;
- }
- return phi(n, k - 1) - phi(n / primes[k - 1], k - 1);
-}
-
-ll pi(ll n) {
- if (n < N) return memoC[n];
- ll a = pi(sqrtl(sqrtl(n)));
- ll b = pi(sqrtl(n));
- ll c = pi(cbrtl(n));
- ll res = phi(n, a) + (b + a - 2) * (b - a + 1) / 2;
- for (ll i = a; i < b; i++) {
- ll w = n / primes[i];
- res -= pi(w);
- if (i > c) continue;
- ll bi = pi(sqrtl(w));
- for (ll j = i; j < bi; j++) {
- res -= pi(w / primes[j]) - j;
- }}
- return res;
-}
|
