diff options
| author | Paul Jungeblut <s_jungeb@i08pc79.atis-stud.uni-karlsruhe.de> | 2014-11-26 11:46:02 +0100 |
|---|---|---|
| committer | Paul Jungeblut <s_jungeb@i08pc79.atis-stud.uni-karlsruhe.de> | 2014-11-26 11:46:02 +0100 |
| commit | 7a217262958cdf11dfb1f90b86df31acde90ff45 (patch) | |
| tree | 8d96850058853910ebf2ef75827b0862180fd0c1 /graph | |
| parent | 2c133b76f193478bb85d41a76ae78695cc067452 (diff) | |
| parent | 24507ee02a8fe20fb22ae30642e3b15e411e82eb (diff) | |
merge
Diffstat (limited to 'graph')
| -rw-r--r-- | graph/TSP.cpp | 28 | ||||
| -rw-r--r-- | graph/bitonicTSP.cpp | 13 | ||||
| -rw-r--r-- | graph/graph.tex | 6 |
3 files changed, 47 insertions, 0 deletions
diff --git a/graph/TSP.cpp b/graph/TSP.cpp new file mode 100644 index 0000000..c38cbb2 --- /dev/null +++ b/graph/TSP.cpp @@ -0,0 +1,28 @@ +//nodes[0] has to be the start and end node. +vector<vector<int>> dist; +vector<int> TSP() { + int n = dist.size(), m = 1 << n; + vector<vector<ii>> dp(n, vector<ii>(m, ii(MAX_N, -1))); + + for(int c = 0; c < n; c++) dp[c][m-1].first = dist[c][0], dp[c][m-1].second = 0; + + for(int v = m - 2; v >= 0; v--) { + for(int c = n - 1; c >= 0; c--) { + for(int g = 0; g < n; g++) { + if(g != c && (((1 << g) & v) == 0)) { + if((dp[g][(v | (1 << g))].first + dist[c][g]) < dp[c][v].first) { + dp[c][v].first = dp[g][(v | (1 << g))].first + dist[c][g]; + dp[c][v].second = g; + } + } + } + } + } + + vector<int> res; res.push_back(0); int v = 0; + while(res.back() != 0 || res.size() == 1) { + res.push_back(dp[res.back()][(v |= (1 << res.back()))].second); + } + + return res; +} diff --git a/graph/bitonicTSP.cpp b/graph/bitonicTSP.cpp new file mode 100644 index 0000000..4e4dda0 --- /dev/null +++ b/graph/bitonicTSP.cpp @@ -0,0 +1,13 @@ +vector< vector<double> > dp; //initialize with -1 +vector< vector<double> > dist; //initialize with all dists between points +vector<int> lr, rl; //left-to-right and right-to-left paths +int n; //number of points +double get(int p1, int p2) { //call get(0, 0) to get length of shortest bitonic route + int v = max(p1, p2) + 1; + if (v == n - 1) return dist[p1][v] + dist[v][p2]; + if (dp[p1][p2] > -0.5) return dp[p1][p2]; + double tryLR = dist[p1][v] + get(v, p2), tryRl = dist[v][p2] + get(p1, v); + if (tryLR < tryRL) lr.push_back(v); //reconstructs the path, pushes v to rl if the choice does not matter + else rl.push_back(v); //change this if needed + return min(tryLR, tryRL); +}
\ No newline at end of file diff --git a/graph/graph.tex b/graph/graph.tex index 4c49663..827892b 100644 --- a/graph/graph.tex +++ b/graph/graph.tex @@ -70,3 +70,9 @@ Finde die maximale Anzahl Pfade von $s$ nach $t$, die keinen Knoten teilen. \subsection{Maximal Cardinatlity Bipartite Mathcing} \lstinputlisting{graph/maxCarBiMatch.cpp} +\subsection{TSP} +\lstinputlisting{graph/TSP.cpp} + +\subsection{Bitonic TSP} +\lstinputlisting{graph/bitonicTSP.cpp} + |
