summaryrefslogtreecommitdiff
path: root/geometry/triangle.tex
diff options
context:
space:
mode:
authorGloria Mundi <gloria@gloria-mundi.eu>2024-11-16 01:24:14 +0100
committerGloria Mundi <gloria@gloria-mundi.eu>2024-11-16 01:24:14 +0100
commit98567ec798aa8ca2cfbcb85c774dd470f30e30d4 (patch)
tree5113d5cc24d1ad5f93810b6442ce584a36950dc8 /geometry/triangle.tex
parentad3856a6b766087df0036de0b556f4700a6498c9 (diff)
parent8d11c6c8213f46f0fa19826917c255edd5d43cb1 (diff)
mzuenni tests
Diffstat (limited to 'geometry/triangle.tex')
-rw-r--r--geometry/triangle.tex41
1 files changed, 0 insertions, 41 deletions
diff --git a/geometry/triangle.tex b/geometry/triangle.tex
deleted file mode 100644
index 3decd54..0000000
--- a/geometry/triangle.tex
+++ /dev/null
@@ -1,41 +0,0 @@
-
-\begin{minipage}[T]{0.27\linewidth}
- Generell:
- \begin{itemize}
- \item $\cos(\gamma)=\frac{a^2+b^2-c^2}{2ab}$
- \item $b=\frac{a}{\sin(\alpha)}\sin(\beta)$
- %\item $b=\frac{a}{\sin(\pi-\beta-\gamma)}\sin(\beta)$
- %\item $\sin(\beta)=\frac{b\sin(\alpha)}{a}$ %asin is not uniquely invertible
- \item $\Delta=\frac{bc}{2}\sin(\alpha)$
- \end{itemize}
-\end{minipage}
-\hfill
-\begin{minipage}[B]{0.5\linewidth}
- \centering
- \begin{tikzpicture}[line cap=round,minimum size=0,x=.7cm,y=0.7cm]
- \node[circle,inner sep=0] (AA) at (0,0) {$A$};
- \node[circle,inner sep=0] (BB) at (3,-1) {$B$};
- \node[circle,inner sep=0] (CC) at (3.666667,1) {$C$};
-
- \coordinate (A) at (AA.0);
- \coordinate (B) at (BB.100);
- \coordinate (C) at (CC.210);
-
- \pic[draw,angle radius=15,pic text=$\gamma$]{angle = A--C--B};
- \pic[draw,angle radius=15,pic text=$\beta$]{angle = C--B--A};
- \pic[draw,angle radius=20,pic text=$\alpha$]{angle = B--A--C};
-
- \draw (A) to[edge label={$b$},inner sep=1] (C);
- \draw (A) to[edge label'={$c$},inner sep=1.3] (B);
- \draw (B) to[edge label'={$a$},inner sep=0.6] (C);
- \end{tikzpicture}
-\end{minipage}
-\hfill
-\begin{minipage}[T]{0.16\linewidth}
- $\beta=90^\circ$:
- \begin{itemize}
- \item $\sin(\alpha)=\frac{a}{b}$
- \item $\cos(\alpha)=\frac{c}{b}$
- \item $\tan(\alpha)=\frac{a}{c}$
- \end{itemize}
-\end{minipage}