diff options
| author | Gloria Mundi <gloria@gloria-mundi.eu> | 2024-11-16 01:24:14 +0100 |
|---|---|---|
| committer | Gloria Mundi <gloria@gloria-mundi.eu> | 2024-11-16 01:24:14 +0100 |
| commit | 98567ec798aa8ca2cfbcb85c774dd470f30e30d4 (patch) | |
| tree | 5113d5cc24d1ad5f93810b6442ce584a36950dc8 /geometry/triangle.tex | |
| parent | ad3856a6b766087df0036de0b556f4700a6498c9 (diff) | |
| parent | 8d11c6c8213f46f0fa19826917c255edd5d43cb1 (diff) | |
mzuenni tests
Diffstat (limited to 'geometry/triangle.tex')
| -rw-r--r-- | geometry/triangle.tex | 41 |
1 files changed, 0 insertions, 41 deletions
diff --git a/geometry/triangle.tex b/geometry/triangle.tex deleted file mode 100644 index 3decd54..0000000 --- a/geometry/triangle.tex +++ /dev/null @@ -1,41 +0,0 @@ - -\begin{minipage}[T]{0.27\linewidth} - Generell: - \begin{itemize} - \item $\cos(\gamma)=\frac{a^2+b^2-c^2}{2ab}$ - \item $b=\frac{a}{\sin(\alpha)}\sin(\beta)$ - %\item $b=\frac{a}{\sin(\pi-\beta-\gamma)}\sin(\beta)$ - %\item $\sin(\beta)=\frac{b\sin(\alpha)}{a}$ %asin is not uniquely invertible - \item $\Delta=\frac{bc}{2}\sin(\alpha)$ - \end{itemize} -\end{minipage} -\hfill -\begin{minipage}[B]{0.5\linewidth} - \centering - \begin{tikzpicture}[line cap=round,minimum size=0,x=.7cm,y=0.7cm] - \node[circle,inner sep=0] (AA) at (0,0) {$A$}; - \node[circle,inner sep=0] (BB) at (3,-1) {$B$}; - \node[circle,inner sep=0] (CC) at (3.666667,1) {$C$}; - - \coordinate (A) at (AA.0); - \coordinate (B) at (BB.100); - \coordinate (C) at (CC.210); - - \pic[draw,angle radius=15,pic text=$\gamma$]{angle = A--C--B}; - \pic[draw,angle radius=15,pic text=$\beta$]{angle = C--B--A}; - \pic[draw,angle radius=20,pic text=$\alpha$]{angle = B--A--C}; - - \draw (A) to[edge label={$b$},inner sep=1] (C); - \draw (A) to[edge label'={$c$},inner sep=1.3] (B); - \draw (B) to[edge label'={$a$},inner sep=0.6] (C); - \end{tikzpicture} -\end{minipage} -\hfill -\begin{minipage}[T]{0.16\linewidth} - $\beta=90^\circ$: - \begin{itemize} - \item $\sin(\alpha)=\frac{a}{b}$ - \item $\cos(\alpha)=\frac{c}{b}$ - \item $\tan(\alpha)=\frac{a}{c}$ - \end{itemize} -\end{minipage} |
