diff options
| author | Gloria Mundi <gloria@gloria-mundi.eu> | 2024-04-15 02:41:45 +0200 |
|---|---|---|
| committer | Gloria Mundi <gloria@gloria-mundi.eu> | 2024-04-15 02:41:45 +0200 |
| commit | 2e0ba29cd0de1e88bed78a96f587613bcf3cc97c (patch) | |
| tree | 58d9c66487fe3fd5ab1d4224f06917f8d5546141 /geometry/formulars.cpp | |
| parent | 5f915f9035e0ff713b80a66be4f7e8407711acfe (diff) | |
typo fixes
Diffstat (limited to 'geometry/formulars.cpp')
| -rw-r--r-- | geometry/formulars.cpp | 42 |
1 files changed, 0 insertions, 42 deletions
diff --git a/geometry/formulars.cpp b/geometry/formulars.cpp deleted file mode 100644 index e34b3c6..0000000 --- a/geometry/formulars.cpp +++ /dev/null @@ -1,42 +0,0 @@ -// Komplexe Zahlen als Punkte. Wenn immer möglich complex<ll> -// verwenden. Funktionen wie abs() geben dann aber ll zurück. -using pt = complex<double>; - -constexpr double PIU = acos(-1.0l); // PIL < PI < PIU -constexpr double PIL = PIU-2e-19l; - -// Winkel zwischen Punkt und x-Achse in [-PI, PI]. -double angle(pt a) {return arg(a);} - -// rotiert Punkt im Uhrzeigersinn um den Ursprung. -pt rotate(pt a, double theta) {return a * polar(1.0, theta);} - -// Skalarprodukt. -double dot(pt a, pt b) {return real(conj(a) * b);} - -// abs()^2.(pre c++20) -double norm(pt a) {return dot(a, a);} - -// Kreuzprodukt, 0, falls kollinear. -double cross(pt a, pt b) {return imag(conj(a) * b);} -double cross(pt p, pt a, pt b) {return cross(a - p, b - p);} - -// 1 => c links von a->b -// 0 => a, b und c kolliniear -// -1 => c rechts von a->b -int orientation(pt a, pt b, pt c) { - double orien = cross(b - a, c - a); - return (orien > EPS) - (orien < -EPS); -} - -// Liegt d in der gleichen Ebene wie a, b, und c? -bool isCoplanar(pt a, pt b, pt c, pt d) { - return abs((b - a) * (c - a) * (d - a)) < EPS; -} - -// identifiziert winkel zwischen Vektoren u und v -pt uniqueAngle(pt u, pt v) { - pt tmp = v * conj(u); - ll g = abs(gcd(real(tmp), imag(tmp))); - return tmp / g; -} |
