summaryrefslogtreecommitdiff
path: root/content/math/tables/series.tex
diff options
context:
space:
mode:
authorGloria Mundi <gloria@gloria-mundi.eu>2024-11-16 15:39:23 +0100
committerGloria Mundi <gloria@gloria-mundi.eu>2024-11-16 15:39:23 +0100
commit72bd993483453ed8ebc462f1a33385cd355d486f (patch)
treec5592ba1ed2fed79e26ba6158d097c9ceb43f061 /content/math/tables/series.tex
parent98567ec798aa8ca2cfbcb85c774dd470f30e30d4 (diff)
parent35d485bcf6a9ed0a9542628ce4aa94a3326d0884 (diff)
merge mzuenni changes
Diffstat (limited to 'content/math/tables/series.tex')
-rw-r--r--content/math/tables/series.tex32
1 files changed, 16 insertions, 16 deletions
diff --git a/content/math/tables/series.tex b/content/math/tables/series.tex
index 3042781..9618c2b 100644
--- a/content/math/tables/series.tex
+++ b/content/math/tables/series.tex
@@ -1,33 +1,33 @@
-\begin{tabularx}{\linewidth}{|XIXIXIX|}
- \hline
- \multicolumn{4}{|c|}{Reihen} \\
+\begin{expandtable}
+\begin{tabularx}{\linewidth}{|XIXIX|}
\hline
$\sum\limits_{i = 1}^n i = \frac{n(n+1)}{2}$ &
$\sum\limits_{i = 1}^n i^2 = \frac{n(n + 1)(2n + 1)}{6}$ &
- $\sum\limits_{i = 1}^n i^3 = \frac{n^2 (n + 1)^2}{4}$ &
- $H_n = \sum\limits_{i = 1}^n \frac{1}{i}$ \\
+ $\sum\limits_{i = 1}^n i^3 = \frac{n^2 (n + 1)^2}{4}$ \\
\grayhline
- $\sum\limits_{i = 0}^n c^i = \frac{c^{n + 1} - 1}{c - 1} \quad c \neq 1$ &
- $\sum\limits_{i = 0}^\infty c^i = \frac{1}{1 - c} \quad \vert c \vert < 1$ &
- $\sum\limits_{i = 1}^\infty c^i = \frac{c}{1 - c} \quad \vert c \vert < 1$ &
- $\sum\limits_{i = 0}^\infty ic^i = \frac{c}{(1 - c)^2} \quad \vert c \vert < 1$ \\
+ $\sum\limits_{i = 0}^n c^i = \frac{c^{n + 1} - 1}{c - 1} \hfill c \neq 1$ &
+ $\sum\limits_{i = 0}^\infty c^i = \frac{1}{1 - c} \hfill \vert c \vert < 1$ &
+ $\sum\limits_{i = 1}^\infty c^i = \frac{c}{1 - c} \hfill \vert c \vert < 1$ \\
\grayhline
-
+
\multicolumn{2}{|lI}{
$\sum\limits_{i = 0}^n ic^i = \frac{nc^{n + 2} - (n + 1)c^{n + 1} + c}{(c - 1)^2} \quad c \neq 1$
} &
- \multicolumn{2}{l|}{
+ $\sum\limits_{i = 0}^\infty ic^i = \frac{c}{(1 - c)^2} \hfill \vert c \vert < 1$ \\
+ \grayhline
+
+ \multicolumn{2}{|lI}{
$\sum\limits_{i = 1}^n iH_i = \frac{n(n + 1)}{2}H_n - \frac{n(n - 1)}{4}$
- } \\
+ } &
+ $H_n = \sum\limits_{i = 1}^n \frac{1}{i}$ \\
\grayhline
\multicolumn{2}{|lI}{
- $\sum\limits_{i = 1}^n H_i = (n + 1)H_n - n$
- } &
- \multicolumn{2}{l|}{
$\sum\limits_{i = 1}^n \binom{i}{m}H_i =
\binom{n + 1}{m + 1} \left(H_{n + 1} - \frac{1}{m + 1}\right)$
- } \\
+ } &
+ $\sum\limits_{i = 1}^n H_i = (n + 1)H_n - n$ \\
\hline
\end{tabularx}
+\end{expandtable}