summaryrefslogtreecommitdiff
path: root/content/math/piLehmer.cpp
diff options
context:
space:
mode:
authorGloria Mundi <gloria@gloria-mundi.eu>2024-11-16 01:24:14 +0100
committerGloria Mundi <gloria@gloria-mundi.eu>2024-11-16 01:24:14 +0100
commit98567ec798aa8ca2cfbcb85c774dd470f30e30d4 (patch)
tree5113d5cc24d1ad5f93810b6442ce584a36950dc8 /content/math/piLehmer.cpp
parentad3856a6b766087df0036de0b556f4700a6498c9 (diff)
parent8d11c6c8213f46f0fa19826917c255edd5d43cb1 (diff)
mzuenni tests
Diffstat (limited to 'content/math/piLehmer.cpp')
-rw-r--r--content/math/piLehmer.cpp52
1 files changed, 52 insertions, 0 deletions
diff --git a/content/math/piLehmer.cpp b/content/math/piLehmer.cpp
new file mode 100644
index 0000000..17df85e
--- /dev/null
+++ b/content/math/piLehmer.cpp
@@ -0,0 +1,52 @@
+constexpr ll cacheA = 2 * 3 * 5 * 7 * 11 * 13 * 17;
+constexpr ll cacheB = 7;
+ll memoA[cacheA + 1][cacheB + 1];
+ll memoB[cacheB + 1];
+ll memoC[N];
+
+void init() {
+ primeSieve(); // @\sourceref{math/primeSieve.cpp}@
+ for (ll i = 0; i < N; i++) {
+ memoC[i] = memoC[i - 1];
+ if (isPrime(i)) memoC[i]++;
+ }
+ memoB[0] = 1;
+ for(ll i = 0; i <= cacheA; i++) memoA[i][0] = i;
+ for(ll i = 1; i <= cacheB; i++) {
+ memoB[i] = primes[i - 1] * memoB[i - 1];
+ for(ll j = 1; j <= cacheA; j++) {
+ memoA[j][i] = memoA[j][i - 1] - memoA[j /
+ primes[i - 1]][i - 1];
+}}}
+
+ll phi(ll n, ll k) {
+ if(k == 0) return n;
+ if(k <= cacheB)
+ return memoA[n % memoB[k]][k] +
+ (n / memoB[k]) * memoA[memoB[k]][k];
+ if(n <= primes[k - 1]*primes[k - 1]) return memoC[n] - k + 1;
+ if(n <= primes[k - 1]*primes[k - 1]*primes[k - 1] && n < N) {
+ ll b = memoC[(ll)sqrtl(n)];
+ ll res = memoC[n] - (b + k - 2) * (b - k + 1) / 2;
+ for(ll i = k; i < b; i++) res += memoC[n / primes[i]];
+ return res;
+ }
+ return phi(n, k - 1) - phi(n / primes[k - 1], k - 1);
+}
+
+ll pi(ll n) {
+ if (n < N) return memoC[n];
+ ll a = pi(sqrtl(sqrtl(n)));
+ ll b = pi(sqrtl(n));
+ ll c = pi(cbrtl(n));
+ ll res = phi(n, a) + (b + a - 2) * (b - a + 1) / 2;
+ for (ll i = a; i < b; i++) {
+ ll w = n / primes[i];
+ res -= pi(w);
+ if (i > c) continue;
+ ll bi = pi(sqrtl(w));
+ for (ll j = i; j < bi; j++) {
+ res -= pi(w / primes[j]) - j;
+ }}
+ return res;
+}