diff options
| author | Gloria Mundi <gloria@gloria-mundi.eu> | 2025-11-20 17:58:00 +0100 |
|---|---|---|
| committer | Gloria Mundi <gloria@gloria-mundi.eu> | 2025-11-20 17:58:00 +0100 |
| commit | 1a0fba268ca9ef390a45c86a94a27edf026a4f67 (patch) | |
| tree | d8316d8758409e2c4436d7c33078b522540f50e6 /content/math/piLehmer.cpp | |
| parent | fcb02c67748678e317cac58f7e43c3ed83860ad9 (diff) | |
normalize newlines
Diffstat (limited to 'content/math/piLehmer.cpp')
| -rw-r--r-- | content/math/piLehmer.cpp | 104 |
1 files changed, 52 insertions, 52 deletions
diff --git a/content/math/piLehmer.cpp b/content/math/piLehmer.cpp index adef16d..83e1b95 100644 --- a/content/math/piLehmer.cpp +++ b/content/math/piLehmer.cpp @@ -1,52 +1,52 @@ -constexpr ll cacheA = 2 * 3 * 5 * 7 * 11 * 13 * 17;
-constexpr ll cacheB = 7;
-ll memoA[cacheA + 1][cacheB + 1];
-ll memoB[cacheB + 1];
-ll memoC[N];
-
-void init() {
- primeSieve(); // @\sourceref{math/primeSieve.cpp}@
- for (ll i = 1; i < N; i++) {
- memoC[i] = memoC[i - 1];
- if (isPrime(i)) memoC[i]++;
- }
- memoB[0] = 1;
- for(ll i = 0; i <= cacheA; i++) memoA[i][0] = i;
- for(ll i = 1; i <= cacheB; i++) {
- memoB[i] = primes[i - 1] * memoB[i - 1];
- for(ll j = 1; j <= cacheA; j++) {
- memoA[j][i] = memoA[j][i - 1] - memoA[j /
- primes[i - 1]][i - 1];
-}}}
-
-ll phi(ll n, ll k) {
- if(k == 0) return n;
- if(k <= cacheB)
- return memoA[n % memoB[k]][k] +
- (n / memoB[k]) * memoA[memoB[k]][k];
- if(n <= primes[k - 1]*primes[k - 1]) return memoC[n] - k + 1;
- if(n <= primes[k - 1]*primes[k - 1]*primes[k - 1] && n < N) {
- ll b = memoC[(ll)sqrtl(n)];
- ll res = memoC[n] - (b + k - 2) * (b - k + 1) / 2;
- for(ll i = k; i < b; i++) res += memoC[n / primes[i]];
- return res;
- }
- return phi(n, k - 1) - phi(n / primes[k - 1], k - 1);
-}
-
-ll pi(ll n) {
- if (n < N) return memoC[n];
- ll a = pi(sqrtl(sqrtl(n)));
- ll b = pi(sqrtl(n));
- ll c = pi(cbrtl(n));
- ll res = phi(n, a) + (b + a - 2) * (b - a + 1) / 2;
- for (ll i = a; i < b; i++) {
- ll w = n / primes[i];
- res -= pi(w);
- if (i > c) continue;
- ll bi = pi(sqrtl(w));
- for (ll j = i; j < bi; j++) {
- res -= pi(w / primes[j]) - j;
- }}
- return res;
-}
+constexpr ll cacheA = 2 * 3 * 5 * 7 * 11 * 13 * 17; +constexpr ll cacheB = 7; +ll memoA[cacheA + 1][cacheB + 1]; +ll memoB[cacheB + 1]; +ll memoC[N]; + +void init() { + primeSieve(); // @\sourceref{math/primeSieve.cpp}@ + for (ll i = 1; i < N; i++) { + memoC[i] = memoC[i - 1]; + if (isPrime(i)) memoC[i]++; + } + memoB[0] = 1; + for(ll i = 0; i <= cacheA; i++) memoA[i][0] = i; + for(ll i = 1; i <= cacheB; i++) { + memoB[i] = primes[i - 1] * memoB[i - 1]; + for(ll j = 1; j <= cacheA; j++) { + memoA[j][i] = memoA[j][i - 1] - memoA[j / + primes[i - 1]][i - 1]; +}}} + +ll phi(ll n, ll k) { + if(k == 0) return n; + if(k <= cacheB) + return memoA[n % memoB[k]][k] + + (n / memoB[k]) * memoA[memoB[k]][k]; + if(n <= primes[k - 1]*primes[k - 1]) return memoC[n] - k + 1; + if(n <= primes[k - 1]*primes[k - 1]*primes[k - 1] && n < N) { + ll b = memoC[(ll)sqrtl(n)]; + ll res = memoC[n] - (b + k - 2) * (b - k + 1) / 2; + for(ll i = k; i < b; i++) res += memoC[n / primes[i]]; + return res; + } + return phi(n, k - 1) - phi(n / primes[k - 1], k - 1); +} + +ll pi(ll n) { + if (n < N) return memoC[n]; + ll a = pi(sqrtl(sqrtl(n))); + ll b = pi(sqrtl(n)); + ll c = pi(cbrtl(n)); + ll res = phi(n, a) + (b + a - 2) * (b - a + 1) / 2; + for (ll i = a; i < b; i++) { + ll w = n / primes[i]; + res -= pi(w); + if (i > c) continue; + ll bi = pi(sqrtl(w)); + for (ll j = i; j < bi; j++) { + res -= pi(w / primes[j]) - j; + }} + return res; +} |
