summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorPaul Jungeblut <paul.jungeblut@gmail.com>2016-02-14 01:46:45 +0100
committerPaul Jungeblut <paul.jungeblut@gmail.com>2016-02-14 01:46:45 +0100
commit71963a0e396b6781d39bf9c3dfe2e76e44d9f5a2 (patch)
tree656c44ec077a873ee12b9d5ffd0e7bd44cfa8e63
parent46e24f0df1c1f124dd39fae13d8f4df844599bc6 (diff)
Improving math section.
-rw-r--r--math/math.tex55
-rw-r--r--tcr.pdfbin250807 -> 250839 bytes
-rw-r--r--tcr.tex55
3 files changed, 100 insertions, 10 deletions
diff --git a/math/math.tex b/math/math.tex
index 7093f78..51410bd 100644
--- a/math/math.tex
+++ b/math/math.tex
@@ -66,20 +66,55 @@ Multipliziert Polynome $A$ und $B$.
\subsection{Kombinatorik}
\subsubsection{Berühmte Zahlen}
-\begin{tabular}{|l|l|l|}
+\begin{tabularx}{\textwidth}{|l|X|l|}
\hline
- \textsc{Fibonacci}-Zahlen & $f(0) = 0 \quad f(1) = 1 \quad f(n+2) = f(n+1) + f(n)$ & Bem. \ref{bem:fibonacciMat}, \ref{bem:fibonacciGreedy}\\
- \textsc{Catalan}-Zahlen & $C_0 = 1 \quad C_n = \sum\limits_{k = 0}^{n - 1} C_kC_{n - 1 - k} = \frac{1}{n + 1}{2n \choose n} = \frac{2(2n - 1)}{n+1} \cdot C_{n-1}$ & Bem. \ref{bem:catalanOverflow}, \ref{bem:catalanAnwendung}\\
- \textsc{Euler}-Zahlen (I) & $\left\langle\begin{array}{c} n \\ 0\end{array}\right\rangle = \left\langle\begin{array}{c} n \\ n-1 \end{array}\right\rangle = 1 \quad \left\langle\begin{array}{c} n \\ k\end{array}\right\rangle = (k + 1)\left\langle\begin{array}{c} n-1 \\ k\end{array}\right\rangle + (n-k)\left\langle\begin{array}{c} n-1 \\ k-1\end{array}\right\rangle$ & Bem. \ref{bem:euler1}\\
- \textsc{Euler}-Zahlen (II) & $\left\langle\left\langle\begin{array}{c}n\\0\end{array}\right\rangle\right\rangle = 1 \quad \left\langle\left\langle\begin{array}{c}n\\n\end{array}\right\rangle\right\rangle = 0 \quad \left\langle\left\langle\begin{array}{c}n\\k\end{array}\right\rangle\right\rangle = (k + 1)\left\langle\left\langle\begin{array}{c}n-1\\k\end{array}\right\rangle\right\rangle + (2n - k - 1)\left\langle\left\langle\begin{array}{c}n-1\\k-1\end{array}\right\rangle\right\rangle$ & Bem. \ref{bem:euler2}\\
- \textsc{Stirling}-Zahlen (I) & $\left[\begin{array}{c}0\\0\end{array}\right] = 1 \quad \left[\begin{array}{c}n\\0\end{array}\right] = \left[\begin{array}{c}0\\n\end{array}\right] = 0 \quad \left[\begin{array}{c}n\\k\end{array}\right] = \left[\begin{array}{c}n-1\\k-1\end{array}\right] + (n-1)\left[\begin{array}{c}n-1\\k\end{array}\right]$ & Bem. \ref{bem:stirling1}\\
- \textsc{Stirling}-Zahlen (II) & $\left\{\begin{array}{c}n\\1\end{array}\right\} = \left\{\begin{array}{c}n\\n\end{array}\right\} = 1 \quad \left\{\begin{array}{c}n\\k\end{array}\right\} = k\left\{\begin{array}{c}n-1\\k\end{array}\right\} + \left\{\begin{array}{c}n-1\\k-1\end{array}\right\}$ & Bem. \ref{bem:stirling2}\\
- Integer-Partitions & $f(1,1) = 1 \quad f(n,k) = 0 \text{ für } k > n \quad f(n,k) = f(n-k,k) + f(n,k-1)$ & Bem. \ref{bem:integerPartitions}\\
+ \textsc{Fibonacci}-Zahlen &
+ $f(0) = 0 \qquad
+ f(1) = 1 \qquad
+ f(n+2) = f(n+1) + f(n)$ &
+ Bem. \ref{bem:fibonacciMat}, \ref{bem:fibonacciGreedy} \\
+
+ \textsc{Catalan}-Zahlen &
+ $C_0 = 1 \qquad
+ C_n = \sum\limits_{k = 0}^{n - 1} C_kC_{n - 1 - k} = \frac{1}{n + 1}\binom{2n}{n} = \frac{2(2n - 1)}{n+1} \cdot C_{n-1}$ &
+ Bem. \ref{bem:catalanOverflow}, \ref{bem:catalanAnwendung} \\
+
+ \textsc{Euler}-Zahlen (I) &
+ $\eulerI{n}{0} = \eulerI{n}{n-1} = 1 \qquad
+ \eulerI{n}{k} = (k+1) \eulerI{n-1}{k} + (n-k) \eulerI{n-1}{k-1} $ &
+ Bem. \ref{bem:euler1} \\
+
+ \textsc{Euler}-Zahlen (II) &
+ $\eulerII{n}{0} = 1 \qquad
+ \eulerII{n}{n} = 0 \qquad
+ \eulerII{n}{k} = (k+1) \eulerII{n-1}{k} + (2n-k-1) \eulerII{n-1}{k-1}$ &
+ Bem. \ref{bem:euler2} \\
+
+ \textsc{Stirling}-Zahlen (I) &
+ $\stirlingI{0}{0} = 1 \qquad
+ \stirlingI{n}{0} = \stirlingI{0}{n} = 0 \qquad
+ \stirlingI{n}{k} = \stirlingI{n-1}{k-1} + (n-1) \stirlingI{n-1}{k}$ &
+ Bem. \ref{bem:stirling1} \\
+
+ \textsc{Stirling}-Zahlen (II) &
+ $\stirlingII{n}{1} = \stirlingII{n}{n} = 1 \qquad
+ \stirlingII{n}{k} = k \stirlingII{n-1}{k} + \stirlingII{n-1}{k-1}$ &
+ Bem. \ref{bem:stirling2} \\
+
+ Integer-Partitions &
+ $f(1,1) = 1 \qquad f(n,k) = 0 \text{ für } k > n \qquad f(n,k) = f(n-k,k) + f(n,k-1)$ &
+ Bem. \ref{bem:integerPartitions} \\
\hline
-\end{tabular}
+\end{tabularx}
\begin{bem}\label{bem:fibonacciMat}
-$\left(\begin{array}{cc} 0 & 1 \\ 1 & 1\end{array}\right)^n \cdot \left(\begin{array}{c}0 \\ 1\end{array}\right) = \left(\begin{array}{c}f_n \\ f_{n+1}\end{array}\right)$
+$
+\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^n
+\cdot
+\begin{pmatrix} 0 \\ 1 \end{pmatrix}
+=
+\begin{pmatrix}f_n \\ f_{n+1} \end{pmatrix}
+$
\end{bem}
\begin{bem}[\textsc{Zeckendorfs} Theorem]\label{bem:fibonacciGreedy}
diff --git a/tcr.pdf b/tcr.pdf
index 768f1b8..cf5e5d4 100644
--- a/tcr.pdf
+++ b/tcr.pdf
Binary files differ
diff --git a/tcr.tex b/tcr.tex
index f1e2459..725c7f8 100644
--- a/tcr.tex
+++ b/tcr.tex
@@ -7,6 +7,7 @@
% Display math.
\usepackage{amsmath}
+\usepackage{mathtools}
\usepackage{amssymb}
% Nice enumerations without wasting space above and below.
@@ -72,10 +73,64 @@
\usepackage{multicol}
\usepackage{multirow}
+% Automatically have table fill horizontal space.
+\usepackage{tabularx}
+
% New enviroment for remarks.
\newtheorem{bem}{Bemerkung}
+% New commands for math operators.
+% Binomial coefficients.
+\renewcommand{\binom}[2]{
+ \biggl(
+ \begin{matrix}
+ #1 \\
+ #2
+ \end{matrix}
+ \biggr)
+}
+% Euler numbers, first kind.
+\newcommand{\eulerI}[2]{
+ \biggl\langle
+ \begin{matrix}
+ #1 \\
+ #2
+ \end{matrix}
+ \biggr\rangle
+}
+% Euler numbers, second kind.
+\newcommand{\eulerII}[2]{
+ \biggl\langle
+ \negthinspace
+ \biggl\langle
+ \begin{matrix}
+ #1 \\
+ #2
+ \end{matrix}
+ \biggr\rangle
+ \negthinspace
+ \biggr\rangle
+}
+% Stirling numbers, first kind.
+\newcommand{\stirlingI}[2]{
+ \biggl[
+ \begin{matrix}
+ #1 \\
+ #2
+ \end{matrix}
+ \biggr]
+}
+% Stirling numbers, second kind.
+\newcommand{\stirlingII}[2]{
+ \biggl\{
+ \begin{matrix}
+ #1 \\
+ #2
+ \end{matrix}
+ \biggr\}
+}
+% Title and author information.
\title{Team Contest Reference}
\author{ChaosKITs \\ Karlsruhe Institute of Technology}
\begin{document}