\begin{expandtable} \begin{tabularx}{\linewidth}{|l|X|} \hline \multicolumn{2}{|c|}{Berühmte Zahlen} \\ \hline \textsc{Fibonacci} & $f(0) = 0 \quad f(1) = 1 \quad f(n+2) = f(n+1) + f(n)$ \\ \grayhline \textsc{Catalan} & $C_0 = 1 \qquad C_n = \sum\limits_{k = 0}^{n - 1} C_kC_{n - 1 - k} = \frac{1}{n + 1}\binom{2n}{n} = \frac{2(2n - 1)}{n+1} \cdot C_{n-1}$ \\ \grayhline \textsc{Euler} I & $\eulerI{n}{0} = \eulerI{n}{n-1} = 1 \qquad \eulerI{n}{k} = (k+1) \eulerI{n-1}{k} + (n-k) \eulerI{n-1}{k-1} $ \\ \grayhline \textsc{Euler} II & $\eulerII{n}{0} = 1 \quad \eulerII{n}{n} = 0 \quad$\\ & $\eulerII{n}{k} = (k+1) \eulerII{n-1}{k} + (2n-k-1) \eulerII{n-1}{k-1}$ \\ \grayhline \textsc{Stirling} I & $\stirlingI{0}{0} = 1 \qquad \stirlingI{n}{0} = \stirlingI{0}{n} = 0 \qquad \stirlingI{n}{k} = \stirlingI{n-1}{k-1} + (n-1) \stirlingI{n-1}{k}$ \\ \grayhline \textsc{Stirling} II & $\stirlingII{n}{1} = \stirlingII{n}{n} = 1 \qquad \stirlingII{n}{k} = k \stirlingII{n-1}{k} + \stirlingII{n-1}{k-1} = \frac{1}{k!} \sum\limits_{j=0}^{k} (-1)^{k-j}\binom{k}{j}j^n$\\ \grayhline \textsc{Bell} & $B_1 = 1 \qquad B_n = \sum\limits_{k = 0}^{n - 1} B_k\binom{n-1}{k} = \sum\limits_{k = 0}^{n}\stirlingII{n}{k}$\\ \grayhline \textsc{Partitions} & $p(0,0) = 1 \quad p(n,k) = 0 \text{ für } k > n \text{ oder } n \leq 0 \text{ oder } k \leq 0$ \\ & $p(n,k) = p(n-k,k) + p(n-1,k-1)$\\ \grayhline \textsc{Partitions} & $f(0) = 1 \quad f(n) = 0~(n < 0)$ \\ & $f(n)=\sum\limits_{k=1}^\infty(-1)^{k-1}f(n - \frac{k(3k+1)}{2})+\sum\limits_{k=1}^\infty(-1)^{k-1}f(n - \frac{k(3k-1)}{2})$\\ \hline \end{tabularx} \end{expandtable}