using lll = __int128; ll rho(ll n) { // Findet Faktor < n, nicht unbedingt prim. if (n % 2 == 0) return 2; ll x = 0, y = 0, prd = 2; auto f = [n](lll x){return (x * x) % n + 1;}; for (ll t = 30, i = n/2 + 7; t % 40 || gcd(prd, n) == 1; t++) { if (x == y) x = ++i, y = f(x); if (ll q = (lll)prd * abs(x-y) % n; q) prd = q; x = f(x); y = f(f(y)); } return gcd(prd, n); } void factor(ll n, map& facts) { if (n == 1) return; if (isPrime(n)) {facts[n]++; return;} ll f = rho(n); factor(n / f, facts); factor(f, facts); }