constexpr ll cache = 500; // requires O(cache^3) vector> memo(cache * cache, vector(cache)); ll pi(ll n); ll phi(ll n, ll k) { if (n <= 1 || k < 0) return 0; if (n <= primes[k]) return n - 1; if (n < N && primes[k] * primes[k] > n) return n - pi(n) + k; bool ok = n < cache * cache; if (ok && memo[n][k] > 0) return memo[n][k]; ll res = n/primes[k] - phi(n/primes[k], k - 1) + phi(n, k - 1); if (ok) memo[n][k] = res; return res; } ll pi(ll n) { if (n < N) { // implement this as O(1) lookup for speedup! return distance(primes.begin(), upper_bound(primes.begin(), primes.end(), n)); } else { ll k = pi(sqrtl(n) + 1); return n - phi(n, k) + k; }}