\begin{minipage}[T]{0.27\linewidth} Generell: \begin{itemize} \item $\cos(\gamma)=\frac{a^2+b^2-c^2}{2ab}$ \item $b=\frac{a}{\sin(\alpha)}\sin(\beta)$ %\item $b=\frac{a}{\sin(\pi-\beta-\gamma)}\sin(\beta)$ %\item $\sin(\beta)=\frac{b\sin(\alpha)}{a}$ %asin is not uniquely invertible \item $\Delta=\frac{bc}{2}\sin(\alpha)$ \end{itemize} \end{minipage} \hfill \begin{minipage}[B]{0.5\linewidth} \centering \begin{tikzpicture}[line cap=round,minimum size=0,x=.7cm,y=0.7cm] \node[circle,inner sep=0] (AA) at (0,0) {$A$}; \node[circle,inner sep=0] (BB) at (3,-1) {$B$}; \node[circle,inner sep=0] (CC) at (3.666667,1) {$C$}; \coordinate (A) at (AA.0); \coordinate (B) at (BB.100); \coordinate (C) at (CC.210); \pic[draw,angle radius=15,pic text=$\gamma$]{angle = A--C--B}; \pic[draw,angle radius=15,pic text=$\beta$]{angle = C--B--A}; \pic[draw,angle radius=20,pic text=$\alpha$]{angle = B--A--C}; \draw (A) to[edge label={$b$},inner sep=1] (C); \draw (A) to[edge label'={$c$},inner sep=1.3] (B); \draw (B) to[edge label'={$a$},inner sep=0.6] (C); \end{tikzpicture} \end{minipage} \hfill \begin{minipage}[T]{0.16\linewidth} $\beta=90^\circ$: \begin{itemize} \item $\sin(\alpha)=\frac{a}{b}$ \item $\cos(\alpha)=\frac{c}{b}$ \item $\tan(\alpha)=\frac{a}{c}$ \end{itemize} \end{minipage}