From 04ca8f7bd16c0c855f604188d617a1bf2e8eacfd Mon Sep 17 00:00:00 2001 From: Gloria Mundi Date: Thu, 13 Feb 2025 22:07:35 +0100 Subject: rename Dinic to Dinitz --- content/graph/dinicScaling.cpp | 57 ----------------------------------------- content/graph/dinitzScaling.cpp | 57 +++++++++++++++++++++++++++++++++++++++++ content/graph/graph.tex | 4 +-- content/other/other.tex | 2 +- 4 files changed, 60 insertions(+), 60 deletions(-) delete mode 100644 content/graph/dinicScaling.cpp create mode 100644 content/graph/dinitzScaling.cpp (limited to 'content') diff --git a/content/graph/dinicScaling.cpp b/content/graph/dinicScaling.cpp deleted file mode 100644 index fd82296..0000000 --- a/content/graph/dinicScaling.cpp +++ /dev/null @@ -1,57 +0,0 @@ -struct Edge { - int to, rev; - ll f, c; -}; - -vector> adj; -int s, t; -vector pt, dist; - -void addEdge(int u, int v, ll c) { - adj[u].push_back({v, (int)ssize(adj[v]), 0, c}); - adj[v].push_back({u, (int)ssize(adj[u]) - 1, 0, 0}); -} - -bool bfs(ll lim) { - dist.assign(ssize(adj), -1); - dist[s] = 0; - queue q({s}); - while (!q.empty() && dist[t] < 0) { - int v = q.front(); q.pop(); - for (Edge& e : adj[v]) { - if (dist[e.to] < 0 && e.c - e.f >= lim) { - dist[e.to] = dist[v] + 1; - q.push(e.to); - }}} - return dist[t] >= 0; -} - -ll dfs(int v, ll flow) { - if (v == t || flow == 0) return flow; - for (; pt[v] < ssize(adj[v]); pt[v]++) { - Edge& e = adj[v][pt[v]]; - if (dist[e.to] != dist[v] + 1) continue; - ll cur = dfs(e.to, min(e.c - e.f, flow)); - if (cur > 0) { - e.f += cur; - adj[e.to][e.rev].f -= cur; - return cur; - }} - return 0; -} - -ll maxFlow(int source, int target) { - s = source, t = target; - ll flow = 0; - // lim = 1 may be faster if capacities are small - for (ll lim = (1LL << 62); lim >= 1; lim /= 2) { - while (bfs(lim)) { - pt.assign(ssize(adj), 0); - ll cur; - do { - cur = dfs(s, lim); - flow += cur; - } while (cur > 0); - }} - return flow; -} diff --git a/content/graph/dinitzScaling.cpp b/content/graph/dinitzScaling.cpp new file mode 100644 index 0000000..fd82296 --- /dev/null +++ b/content/graph/dinitzScaling.cpp @@ -0,0 +1,57 @@ +struct Edge { + int to, rev; + ll f, c; +}; + +vector> adj; +int s, t; +vector pt, dist; + +void addEdge(int u, int v, ll c) { + adj[u].push_back({v, (int)ssize(adj[v]), 0, c}); + adj[v].push_back({u, (int)ssize(adj[u]) - 1, 0, 0}); +} + +bool bfs(ll lim) { + dist.assign(ssize(adj), -1); + dist[s] = 0; + queue q({s}); + while (!q.empty() && dist[t] < 0) { + int v = q.front(); q.pop(); + for (Edge& e : adj[v]) { + if (dist[e.to] < 0 && e.c - e.f >= lim) { + dist[e.to] = dist[v] + 1; + q.push(e.to); + }}} + return dist[t] >= 0; +} + +ll dfs(int v, ll flow) { + if (v == t || flow == 0) return flow; + for (; pt[v] < ssize(adj[v]); pt[v]++) { + Edge& e = adj[v][pt[v]]; + if (dist[e.to] != dist[v] + 1) continue; + ll cur = dfs(e.to, min(e.c - e.f, flow)); + if (cur > 0) { + e.f += cur; + adj[e.to][e.rev].f -= cur; + return cur; + }} + return 0; +} + +ll maxFlow(int source, int target) { + s = source, t = target; + ll flow = 0; + // lim = 1 may be faster if capacities are small + for (ll lim = (1LL << 62); lim >= 1; lim /= 2) { + while (bfs(lim)) { + pt.assign(ssize(adj), 0); + ll cur; + do { + cur = dfs(s, lim); + flow += cur; + } while (cur > 0); + }} + return flow; +} diff --git a/content/graph/graph.tex b/content/graph/graph.tex index 6e8e20b..0692d20 100644 --- a/content/graph/graph.tex +++ b/content/graph/graph.tex @@ -215,12 +215,12 @@ Sei $a_{ij}$ die Adjazenzmatrix von $G$ \textcolor{gray}{(mit $a_{ii} = 1$)}, da \sourcecode{graph/pushRelabel.cpp} } -\subsubsection{\textsc{Dinic}'s Algorithm mit Capacity Scaling} +\subsubsection{\textsc{Dinitz}'s Algorithm mit Capacity Scaling} \begin{methods} \method{maxFlow}{doppelt so schnell wie \textsc{Ford-Fulkerson}}{\abs{V}^2\cdot\abs{E}} \method{addEdge}{fügt eine \textbf{gerichtete} Kante ein}{1} \end{methods} -\sourcecode{graph/dinicScaling.cpp} +\sourcecode{graph/dinitzScaling.cpp} \begin{algorithm}{Min-Cost-Max-Flow} \begin{methods} diff --git a/content/other/other.tex b/content/other/other.tex index 8896962..dce0f3d 100644 --- a/content/other/other.tex +++ b/content/other/other.tex @@ -123,7 +123,7 @@ c'(s',v)&=\sum_{u\in{}V}d(u,v)&c'(v,t')&=\sum_{u\in{}V}d(v,u)\\[-0.5ex] c'(u,v)&=c(u,v)-d(u,v)&c'(t,s)&=x \end{align*} - Löse Fluss auf $G'$ mit \textsc{Dinic's Algorithmus}, wenn alle Kanten von $s'$ saturiert sind ist der Fluss in $G$ gültig. $x$ beschränkt den Fluss in $G$ (Binary-Search für minflow, $\infty$ sonst). + Löse Fluss auf $G'$ mit \textsc{Dinitz's Algorithmus}, wenn alle Kanten von $s'$ saturiert sind ist der Fluss in $G$ gültig. $x$ beschränkt den Fluss in $G$ (Binary-Search für minflow, $\infty$ sonst). \item \textbf{\textsc{Johnson}s Reweighting Algorithm:} Initialisiere alle Entfernungen mit \texttt{d[i] = 0}. Berechne mit \textsc{Bellmann-Ford} kürzeste Entfernungen. Falls es einen negativen Zyklus gibt abrrechen. -- cgit v1.2.3