From b9b46fb67aeb45baa83e91c699bd3fae0f4fe4af Mon Sep 17 00:00:00 2001 From: Lucas Schwebler Date: Wed, 13 Mar 2024 21:03:21 +0100 Subject: add inv, log, exp of formal power series --- math/transforms/seriesOperations.cpp | 55 ++++++++++++++++++++++++++++++++++++ 1 file changed, 55 insertions(+) create mode 100644 math/transforms/seriesOperations.cpp diff --git a/math/transforms/seriesOperations.cpp b/math/transforms/seriesOperations.cpp new file mode 100644 index 0000000..3851a1e --- /dev/null +++ b/math/transforms/seriesOperations.cpp @@ -0,0 +1,55 @@ +vector poly_inv(vector a, int n){ + vector q = {powMod(a[0], mod-2, mod)}; + for(int len = 1; len < n; len *= 2){ + vector a2 = a, q2 = q; + a2.resize(2*len), q2.resize(2*len); + ntt(q2); + for(int j = 0; j < 2; j++){ + ntt(a2); + for(int i = 0; i < 2*len; i++) a2[i] = a2[i] * q2[i] % mod; + ntt(a2, true); + for(int i = 0; i < len; i++) a2[i] = 0; + } + for(int i = len; i < min(n, 2*len); i++) q.push_back((mod - a2[i]) % mod); + } + return q; +} + +vector poly_deriv(vector a){ + for(int i = 0; i < sz(a)-1; i++) + a[i] = a[i+1] * (i+1) % mod; + a.pop_back(); + return a; +} + +vector poly_integr(vector a){ + if(a.empty()) return {0}; + a.push_back(a.back() * powMod(sz(a), mod-2, mod) % mod); + for(int i = sz(a)-2; i > 0; i--) + a[i] = a[i-1] * powMod(i, mod-2, mod) % mod; + a[0] = 0; + return a; +} + +vector poly_log(vector a, int n){ + a = mul(poly_deriv(a), poly_inv(a, n)); + a.resize(n-1); + a = poly_integr(a); + return a; +} + +vector poly_exp(vector a, int n){ + vector q = {1}; + for(int len = 1; len < n; len *= 2){ + vector p = poly_log(q, 2*len); + for(int i = 0; i < 2*len; i++) + p[i] = (mod - p[i] + (i < sz(a) ? a[i] : 0)) % mod; + vector q2 = q; + q2.resize(2*len); + ntt(p), ntt(q2); + for(int i = 0; i < 2*len; i++) p[i] = p[i] * q2[i] % mod; + ntt(p, true); + for(int i = len; i < min(n, 2*len); i++) q.push_back(p[i]); + } + return q; +} \ No newline at end of file -- cgit v1.2.3 From 36e9961fe1f3a63693c86da020cf2c38893170b9 Mon Sep 17 00:00:00 2001 From: Lucas Schwebler Date: Wed, 13 Mar 2024 22:21:49 +0100 Subject: new crt --- math/chineseRemainder.cpp | 47 +++++++++++++---------------------------------- 1 file changed, 13 insertions(+), 34 deletions(-) diff --git a/math/chineseRemainder.cpp b/math/chineseRemainder.cpp index 623f94b..a1aa480 100644 --- a/math/chineseRemainder.cpp +++ b/math/chineseRemainder.cpp @@ -1,35 +1,14 @@ -// Laufzeit: O(n * log(n)), n := Anzahl der Kongruenzen. Nur für -// teilerfremde Moduli. Berechnet das kleinste, nicht negative x, -// das alle Kongruenzen simultan löst. Alle Lösungen sind -// kongruent zum kgV der Moduli (Produkt, da teilerfremd). -struct ChineseRemainder { - using lll = __int128; - vector lhs, rhs, mods, inv; - lll M; // Produkt über die Moduli. Kann leicht überlaufen. +struct CRT{ + using lll = __int128_t; + lll M = 1, sol = 0; // Solution unique modulo M + bool hasSol = true; - ll g(const vector &vec) { - lll res = 0; - for (int i = 0; i < sz(vec); i++) { - res += (vec[i] * inv[i]) % M; - res %= M; - } - return res; - } - - // Fügt Kongruenz l * x = r (mod m) hinzu. - void addEquation(ll l, ll r, ll m) { - lhs.push_back(l); - rhs.push_back(r); - mods.push_back(m); - } - - ll solve() { // Löst das System. - M = accumulate(all(mods), lll(1), multiplies()); - inv.resize(sz(lhs)); - for (int i = 0; i < sz(lhs); i++) { - lll x = (M / mods[i]) % mods[i]; - inv[i] = (multInv(x, mods[i]) * (M / mods[i])); - } - return (multInv(g(lhs), M) * g(rhs)) % M; - } -}; + // Adds congruence x = a (mod m) + void add(ll a, ll m){ + ll s, t, d = extendedEuclid(M, m, s, t); + if((a - sol) % d != 0) hasSol = false; + lll z = M/d * s; + M *= m/d; + sol = (z % M * (a-sol) % M + sol + M) % M; + } +}; \ No newline at end of file -- cgit v1.2.3