summaryrefslogtreecommitdiff
path: root/math
diff options
context:
space:
mode:
Diffstat (limited to 'math')
-rw-r--r--math/berlekampMassey.cpp31
-rw-r--r--math/bigint.cpp275
-rw-r--r--math/binomial0.cpp14
-rw-r--r--math/binomial1.cpp8
-rw-r--r--math/binomial2.cpp32
-rw-r--r--math/binomial3.cpp10
-rw-r--r--math/chineseRemainder.cpp14
-rw-r--r--math/cycleDetection.cpp16
-rw-r--r--math/discreteLogarithm.cpp14
-rw-r--r--math/discreteNthRoot.cpp5
-rw-r--r--math/divisors.cpp11
-rw-r--r--math/extendedEuclid.cpp6
-rw-r--r--math/gauss.cpp36
-rw-r--r--math/gcd-lcm.cpp2
-rw-r--r--math/goldenSectionSearch.cpp15
-rw-r--r--math/inversions.cpp9
-rw-r--r--math/inversionsMerge.cpp27
-rw-r--r--math/kthperm.cpp14
-rw-r--r--math/legendre.cpp4
-rw-r--r--math/lgsFp.cpp26
-rw-r--r--math/linearCongruence.cpp5
-rw-r--r--math/linearRecurence.cpp33
-rw-r--r--math/linearSieve.cpp49
-rw-r--r--math/longestIncreasingSubsequence.cpp17
-rw-r--r--math/math.tex535
-rw-r--r--math/matrixPower.cpp16
-rw-r--r--math/millerRabin.cpp19
-rw-r--r--math/mobius.cpp21
-rw-r--r--math/modExp.cpp6
-rw-r--r--math/modMulIterativ.cpp9
-rw-r--r--math/modPowIterativ.cpp9
-rw-r--r--math/modSqrt.cpp23
-rw-r--r--math/multInv.cpp4
-rw-r--r--math/permIndex.cpp13
-rw-r--r--math/phi.cpp21
-rw-r--r--math/piLegendre.cpp23
-rw-r--r--math/piLehmer.cpp52
-rw-r--r--math/polynomial.cpp65
-rw-r--r--math/primeSieve.cpp16
-rw-r--r--math/primitiveRoot.cpp23
-rw-r--r--math/rho.cpp19
-rw-r--r--math/shortModInv.cpp3
-rw-r--r--math/simpson.cpp12
-rw-r--r--math/sqrtModCipolla.cpp13
-rw-r--r--math/squfof.cpp89
-rw-r--r--math/tables.tex18
-rw-r--r--math/tables/binom.tex28
-rw-r--r--math/tables/composite.tex27
-rw-r--r--math/tables/nim.tex96
-rw-r--r--math/tables/numbers.tex59
-rw-r--r--math/tables/platonic.tex39
-rw-r--r--math/tables/probability.tex27
-rw-r--r--math/tables/series.tex33
-rw-r--r--math/tables/stuff.tex32
-rw-r--r--math/tables/twelvefold.tex32
-rw-r--r--math/transforms/andTransform.cpp8
-rw-r--r--math/transforms/bitwiseTransforms.cpp12
-rw-r--r--math/transforms/fft.cpp23
-rw-r--r--math/transforms/fftMul.cpp14
-rw-r--r--math/transforms/multiplyBitwise.cpp8
-rw-r--r--math/transforms/multiplyFFT.cpp12
-rw-r--r--math/transforms/multiplyNTT.cpp8
-rw-r--r--math/transforms/ntt.cpp23
-rw-r--r--math/transforms/orTransform.cpp8
-rw-r--r--math/transforms/seriesOperations.cpp56
-rw-r--r--math/transforms/xorTransform.cpp10
66 files changed, 0 insertions, 2237 deletions
diff --git a/math/berlekampMassey.cpp b/math/berlekampMassey.cpp
deleted file mode 100644
index 29e084f..0000000
--- a/math/berlekampMassey.cpp
+++ /dev/null
@@ -1,31 +0,0 @@
-constexpr ll mod = 1'000'000'007;
-vector<ll> BerlekampMassey(const vector<ll>& s) {
- int n = sz(s), L = 0, m = 0;
- vector<ll> C(n), B(n), T;
- C[0] = B[0] = 1;
-
- ll b = 1;
- for (int i = 0; i < n; i++) {
- m++;
- ll d = s[i] % mod;
- for (int j = 1; j <= L; j++) {
- d = (d + C[j] * s[i - j]) % mod;
- }
- if (!d) continue;
- T = C;
- ll coef = d * powMod(b, mod-2, mod) % mod;
- for (int j = m; j < n; j++) {
- C[j] = (C[j] - coef * B[j - m]) % mod;
- }
- if (2 * L > i) continue;
- L = i + 1 - L;
- swap(B, T);
- b = d;
- m = 0;
- }
-
- C.resize(L + 1);
- C.erase(C.begin());
- for (auto& x : C) x = (mod - x) % mod;
- return C;
-}
diff --git a/math/bigint.cpp b/math/bigint.cpp
deleted file mode 100644
index 6f83a93..0000000
--- a/math/bigint.cpp
+++ /dev/null
@@ -1,275 +0,0 @@
-// base and base_digits must be consistent
-constexpr ll base = 1'000'000;
-constexpr ll base_digits = 6;
-struct bigint {
- vll a; ll sign;
-
- bigint() : sign(1) {}
-
- bigint(ll v) {*this = v;}
-
- bigint(const string &s) {read(s);}
-
- void operator=(const bigint& v) {
- sign = v.sign;
- a = v.a;
- }
-
- void operator=(ll v) {
- sign = 1;
- if (v < 0) sign = -1, v = -v;
- a.clear();
- for (; v > 0; v = v / base)
- a.push_back(v % base);
- }
-
- bigint operator+(const bigint& v) const {
- if (sign == v.sign) {
- bigint res = v;
- for (ll i = 0, carry = 0; i < max(sz(a), sz(v.a)) || carry; ++i) {
- if (i == sz(res.a))
- res.a.push_back(0);
- res.a[i] += carry + (i < sz(a) ? a[i] : 0);
- carry = res.a[i] >= base;
- if (carry)
- res.a[i] -= base;
- }
- return res;
- }
- return *this - (-v);
- }
-
- bigint operator-(const bigint& v) const {
- if (sign == v.sign) {
- if (abs() >= v.abs()) {
- bigint res = *this;
- for (ll i = 0, carry = 0; i < sz(v.a) || carry; ++i) {
- res.a[i] -= carry + (i < sz(v.a) ? v.a[i] : 0);
- carry = res.a[i] < 0;
- if (carry) res.a[i] += base;
- }
- res.trim();
- return res;
- }
- return -(v - *this);
- }
- return *this + (-v);
- }
-
- void operator*=(ll v) {
- if (v < 0) sign = -sign, v = -v;
- for (ll i = 0, carry = 0; i < sz(a) || carry; ++i) {
- if (i == sz(a)) a.push_back(0);
- ll cur = a[i] * v + carry;
- carry = cur / base;
- a[i] = cur % base;
- }
- trim();
- }
-
- bigint operator*(ll v) const {
- bigint res = *this;
- res *= v;
- return res;
- }
-
- friend pair<bigint, bigint> divmod(const bigint& a1, const bigint& b1) {
- ll norm = base / (b1.a.back() + 1);
- bigint a = a1.abs() * norm;
- bigint b = b1.abs() * norm;
- bigint q, r;
- q.a.resize(sz(a.a));
- for (ll i = sz(a.a) - 1; i >= 0; i--) {
- r *= base;
- r += a.a[i];
- ll s1 = sz(r.a) <= sz(b.a) ? 0 : r.a[sz(b.a)];
- ll s2 = sz(r.a) <= sz(b.a) - 1 ? 0 : r.a[sz(b.a) - 1];
- ll d = (base * s1 + s2) / b.a.back();
- r -= b * d;
- while (r < 0) r += b, --d;
- q.a[i] = d;
- }
- q.sign = a1.sign * b1.sign;
- r.sign = a1.sign;
- q.trim();
- r.trim();
- return make_pair(q, r / norm);
- }
-
- bigint operator/(const bigint& v) const {
- return divmod(*this, v).first;
- }
-
- bigint operator%(const bigint& v) const {
- return divmod(*this, v).second;
- }
-
- void operator/=(ll v) {
- if (v < 0) sign = -sign, v = -v;
- for (ll i = sz(a) - 1, rem = 0; i >= 0; --i) {
- ll cur = a[i] + rem * base;
- a[i] = cur / v;
- rem = cur % v;
- }
- trim();
- }
-
- bigint operator/(ll v) const {
- bigint res = *this;
- res /= v;
- return res;
- }
-
- ll operator%(ll v) const {
- if (v < 0) v = -v;
- ll m = 0;
- for (ll i = sz(a) - 1; i >= 0; --i)
- m = (a[i] + m * base) % v;
- return m * sign;
- }
-
- void operator+=(const bigint& v) {
- *this = *this + v;
- }
- void operator-=(const bigint& v) {
- *this = *this - v;
- }
- void operator*=(const bigint& v) {
- *this = *this * v;
- }
- void operator/=(const bigint& v) {
- *this = *this / v;
- }
-
- bool operator<(const bigint& v) const {
- if (sign != v.sign) return sign < v.sign;
- if (sz(a) != sz(v.a))
- return sz(a) * sign < sz(v.a) * v.sign;
- for (ll i = sz(a) - 1; i >= 0; i--)
- if (a[i] != v.a[i])
- return a[i] * sign < v.a[i] * sign;
- return false;
- }
-
- bool operator>(const bigint& v) const {
- return v < *this;
- }
- bool operator<=(const bigint& v) const {
- return !(v < *this);
- }
- bool operator>=(const bigint& v) const {
- return !(*this < v);
- }
- bool operator==(const bigint& v) const {
- return !(*this < v) && !(v < *this);
- }
- bool operator!=(const bigint& v) const {
- return *this < v || v < *this;
- }
-
- void trim() {
- while (!a.empty() && !a.back()) a.pop_back();
- if (a.empty()) sign = 1;
- }
-
- bool isZero() const {
- return a.empty() || (sz(a) == 1 && a[0] == 0);
- }
-
- bigint operator-() const {
- bigint res = *this;
- res.sign = -sign;
- return res;
- }
-
- bigint abs() const {
- bigint res = *this;
- res.sign *= res.sign;
- return res;
- }
-
- ll longValue() const {
- ll res = 0;
- for (ll i = sz(a) - 1; i >= 0; i--)
- res = res * base + a[i];
- return res * sign;
- }
-
- void read(const string& s) {
- sign = 1;
- a.clear();
- ll pos = 0;
- while (pos < sz(s) && (s[pos] == '-' || s[pos] == '+')) {
- if (s[pos] == '-') sign = -sign;
- ++pos;
- }
- for (ll i = sz(s) - 1; i >= pos; i -= base_digits) {
- ll x = 0;
- for (ll j = max(pos, i - base_digits + 1); j <= i; j++)
- x = x * 10 + s[j] - '0';
- a.push_back(x);
- }
- trim();
- }
-
- friend istream& operator>>(istream& stream, bigint& v) {
- string s;
- stream >> s;
- v.read(s);
- return stream;
- }
-
- friend ostream& operator<<(ostream& stream, const bigint& v) {
- if (v.sign == -1) stream << '-';
- stream << (v.a.empty() ? 0 : v.a.back());
- for (ll i = sz(v.a) - 2; i >= 0; --i)
- stream << setw(base_digits) << setfill('0') << v.a[i];
- return stream;
- }
-
- static vll karatsubaMultiply(const vll& a, const vll& b) {
- ll n = sz(a);
- vll res(n + n);
- if (n <= 32) {
- for (ll i = 0; i < n; i++)
- for (ll j = 0; j < n; j++)
- res[i + j] += a[i] * b[j];
- return res;
- }
- ll k = n >> 1;
- vll a1(a.begin(), a.begin() + k);
- vll a2(a.begin() + k, a.end());
- vll b1(b.begin(), b.begin() + k);
- vll b2(b.begin() + k, b.end());
- vll a1b1 = karatsubaMultiply(a1, b1);
- vll a2b2 = karatsubaMultiply(a2, b2);
- for (ll i = 0; i < k; i++) a2[i] += a1[i];
- for (ll i = 0; i < k; i++) b2[i] += b1[i];
- vll r = karatsubaMultiply(a2, b2);
- for (ll i = 0; i < sz(a1b1); i++) r[i] -= a1b1[i];
- for (ll i = 0; i < sz(a2b2); i++) r[i] -= a2b2[i];
- for (ll i = 0; i < sz(r); i++) res[i + k] += r[i];
- for (ll i = 0; i < sz(a1b1); i++) res[i] += a1b1[i];
- for (ll i = 0; i < sz(a2b2); i++) res[i + n] += a2b2[i];
- return res;
- }
-
- bigint operator*(const bigint& v) const {
- vll a(this->a.begin(), this->a.end());
- vll b(v.a.begin(), v.a.end());
- while (sz(a) < sz(b)) a.push_back(0);
- while (sz(b) < sz(a)) b.push_back(0);
- while (sz(a) & (sz(a) - 1))
- a.push_back(0), b.push_back(0);
- vll c = karatsubaMultiply(a, b);
- bigint res;
- res.sign = sign * v.sign;
- for (ll i = 0, carry = 0; i < sz(c); i++) {
- ll cur = c[i] + carry;
- res.a.push_back(cur % base);
- carry = cur / base;
- }
- res.trim();
- return res;
- }
-};
diff --git a/math/binomial0.cpp b/math/binomial0.cpp
deleted file mode 100644
index 896a0f1..0000000
--- a/math/binomial0.cpp
+++ /dev/null
@@ -1,14 +0,0 @@
-constexpr ll lim = 10'000'000;
-ll fac[lim], inv[lim];
-
-void precalc() {
- fac[0] = inv[0] = 1;
- for (int i = 1; i < lim; i++) fac[i] = fac[i-1] * i % mod;
- inv[lim - 1] = multInv(fac[lim - 1], mod);
- for (int i = lim - 1; i > 0; i--) inv[i-1] = inv[i] * i % mod;
-}
-
-ll calc_binom(ll n, ll k) {
- if (n < 0 || n < k || k < 0) return 0;
- return (inv[n] * inv[n-k] % mod) * fac[k] % mod;
-}
diff --git a/math/binomial1.cpp b/math/binomial1.cpp
deleted file mode 100644
index dab20b3..0000000
--- a/math/binomial1.cpp
+++ /dev/null
@@ -1,8 +0,0 @@
-ll calc_binom(ll n, ll k) {
- if (k > n) return 0;
- ll r = 1;
- for (ll d = 1; d <= k; d++) {// Reihenfolge => Teilbarkeit
- r *= n--, r /= d;
- }
- return r;
-}
diff --git a/math/binomial2.cpp b/math/binomial2.cpp
deleted file mode 100644
index 4531505..0000000
--- a/math/binomial2.cpp
+++ /dev/null
@@ -1,32 +0,0 @@
-constexpr ll mod = 1'000'000'009;
-
-ll binomPPow(ll n, ll k, ll p) {
- ll res = 1;
- if (p > n) {
- } else if (p > n - k || (p * p > n && n % p < k % p)) {
- res *= p;
- res %= mod;
- } else if (p * p <= n) {
- ll c = 0, tmpN = n, tmpK = k;
- while (tmpN > 0) {
- if (tmpN % p < tmpK % p + c) {
- res *= p;
- res %= mod;
- c = 1;
- } else c = 0;
- tmpN /= p;
- tmpK /= p;
- }}
- return res;
-}
-
-ll calc_binom(ll n, ll k) {
- if (k > n) return 0;
- ll res = 1;
- k = min(k, n - k);
- for (ll i = 0; primes[i] <= n; i++) {
- res *= binomPPow(n, k, primes[i]);
- res %= mod;
- }
- return res;
-}
diff --git a/math/binomial3.cpp b/math/binomial3.cpp
deleted file mode 100644
index f52337c..0000000
--- a/math/binomial3.cpp
+++ /dev/null
@@ -1,10 +0,0 @@
-ll calc_binom(ll n, ll k, ll p) {
- assert(n < p) //wichtig: sonst falsch!
- if (k > n) return 0;
- ll x = k % 2 != 0 ? p-1 : 1;
- for (ll c = p-1; c > n; c--) {
- x *= c - k; x %= p;
- x *= multInv(c, p); x %= p;
- }
- return x;
-}
diff --git a/math/chineseRemainder.cpp b/math/chineseRemainder.cpp
deleted file mode 100644
index ccbc5dc..0000000
--- a/math/chineseRemainder.cpp
+++ /dev/null
@@ -1,14 +0,0 @@
-struct CRT {
- using lll = __int128;
- lll M = 1, sol = 0; // Solution unique modulo M
- bool hasSol = true;
-
- // Adds congruence x = a (mod m)
- void add(ll a, ll m) {
- auto [d, s, t] = extendedEuclid(M, m);
- if((a - sol) % d != 0) hasSol = false;
- lll z = M/d * s;
- M *= m/d;
- sol = (z % M * (a-sol) % M + sol + M) % M;
- }
-};
diff --git a/math/cycleDetection.cpp b/math/cycleDetection.cpp
deleted file mode 100644
index 621af82..0000000
--- a/math/cycleDetection.cpp
+++ /dev/null
@@ -1,16 +0,0 @@
-void cycleDetection(ll x0, function<ll(ll)> f) {
- ll a = x0, b = f(x0), length = 1;
- for (ll power = 1; a != b; b = f(b), length++) {
- if (power == length) {
- power *= 2;
- length = 0;
- a = b;
- }}
- ll start = 0;
- a = x0; b = x0;
- for (ll i = 0; i < length; i++) b = f(b);
- while (a != b) {
- a = f(a);
- b = f(b);
- start++;
-}}
diff --git a/math/discreteLogarithm.cpp b/math/discreteLogarithm.cpp
deleted file mode 100644
index d9227b9..0000000
--- a/math/discreteLogarithm.cpp
+++ /dev/null
@@ -1,14 +0,0 @@
-ll dlog(ll a, ll b, ll m) {
- ll bound = sqrtl(m) + 1; //memory usage bound
- map<ll, ll> vals;
- for (ll i = 0, e = 1; i < bound; i++, e = (e * a) % m) {
- vals[e] = i;
- }
- ll fact = powMod(a, m - bound - 1, m);
-
- for (ll i = 0; i < m; i += bound, b = (b * fact) % m) {
- if (vals.count(b)) {
- return i + vals[b];
- }}
- return -1;
-}
diff --git a/math/discreteNthRoot.cpp b/math/discreteNthRoot.cpp
deleted file mode 100644
index 7201b2b..0000000
--- a/math/discreteNthRoot.cpp
+++ /dev/null
@@ -1,5 +0,0 @@
-ll root(ll a, ll b, ll m) {
- ll g = findPrimitive(m);
- ll c = dlog(powMod(g, a, m), b, m); //dLog @\sourceref{math/discreteLogarithm.cpp}@
- return c < 0 ? -1 : powMod(g, c, m);
-}
diff --git a/math/divisors.cpp b/math/divisors.cpp
deleted file mode 100644
index 5afd4fb..0000000
--- a/math/divisors.cpp
+++ /dev/null
@@ -1,11 +0,0 @@
-ll countDivisors(ll n) {
- ll res = 1;
- for (ll i = 2; i * i * i <= n; i++) {
- ll c = 0;
- while (n % i == 0) {n /= i; c++;}
- res *= c + 1;
- }
- if (isPrime(n)) res *= 2;
- else if (n > 1) res *= isSquare(n) ? 3 : 4;
- return res;
-}
diff --git a/math/extendedEuclid.cpp b/math/extendedEuclid.cpp
deleted file mode 100644
index ecf4a16..0000000
--- a/math/extendedEuclid.cpp
+++ /dev/null
@@ -1,6 +0,0 @@
-// a*x + b*y = ggt(a, b)
-array<ll, 3> extendedEuclid(ll a, ll b) {
- if (a == 0) return {b, 0, 1};
- auto [d, x, y] = extendedEuclid(b % a, a);
- return {d, y - (b / a) * x, x};
-}
diff --git a/math/gauss.cpp b/math/gauss.cpp
deleted file mode 100644
index 3e3b7aa..0000000
--- a/math/gauss.cpp
+++ /dev/null
@@ -1,36 +0,0 @@
-void normalLine(int line) {
- double factor = mat[line][line];
- for (double& x : mat[line]) x /= factor;
-}
-
-void takeAll(int n, int line) {
- for (int i = 0; i < n; i++) {
- if (i == line) continue;
- double diff = mat[i][line];
- for (int j = 0; j <= n; j++) {
- mat[i][j] -= diff * mat[line][j];
-}}}
-
-int gauss(int n) {
- vector<bool> done(n, false);
- for (int i = 0; i < n; i++) {
- int swappee = i; // Sucht Pivotzeile für bessere Stabilität.
- for (int j = 0; j < n; j++) {
- if (done[j]) continue;
- if (abs(mat[j][i]) > abs(mat[i][i])) swappee = j;
- }
- swap(mat[i], mat[swappee]);
- if (abs(mat[i][i]) > EPS) {
- normalLine(i);
- takeAll(n, i);
- done[i] = true;
- }}
- // Ab jetzt nur checks bzgl. Eindeutigkeit/Existenz der Lösung.
- for (int i = 0; i < n; i++) {
- bool allZero = true;
- for (int j = i; j < n; j++) allZero &= abs(mat[i][j]) <= EPS;
- if (allZero && abs(mat[i][n]) > EPS) return INCONSISTENT;
- if (allZero && abs(mat[i][n]) <= EPS) return MULTIPLE;
- }
- return UNIQUE;
-}
diff --git a/math/gcd-lcm.cpp b/math/gcd-lcm.cpp
deleted file mode 100644
index a1c63c8..0000000
--- a/math/gcd-lcm.cpp
+++ /dev/null
@@ -1,2 +0,0 @@
-ll gcd(ll a, ll b) {return b == 0 ? a : gcd(b, a % b);}
-ll lcm(ll a, ll b) {return a * (b / gcd(a, b));}
diff --git a/math/goldenSectionSearch.cpp b/math/goldenSectionSearch.cpp
deleted file mode 100644
index 20b15e8..0000000
--- a/math/goldenSectionSearch.cpp
+++ /dev/null
@@ -1,15 +0,0 @@
-ld gss(ld l, ld r, function<ld(ld)> f) {
- ld inv = (sqrt(5.0l) - 1) / 2;
- ld x1 = r - inv*(r-l), x2 = l + inv*(r-l);
- ld f1 = f(x1), f2 = f(x2);
- for (int i = 0; i < 200; i++) {
- if (f1 < f2) { //change to > to find maximum
- u = x2; x2 = x1; f2 = f1;
- x1 = r - inv*(r-l); f1 = f(x1);
- } else {
- l = x1; x1 = x2; f1 = f2;
- x2 = l + inv*(r-l); f2 = f(x2);
- }
- }
- return l;
-}
diff --git a/math/inversions.cpp b/math/inversions.cpp
deleted file mode 100644
index 9e47f9b..0000000
--- a/math/inversions.cpp
+++ /dev/null
@@ -1,9 +0,0 @@
-ll inversions(const vector<ll>& v) {
- Tree<pair<ll, ll>> t; //ordered statistics tree @\sourceref{datastructures/pbds.cpp}@
- ll res = 0;
- for (ll i = 0; i < sz(v); i++) {
- res += i - t.order_of_key({v[i], i});
- t.insert({v[i], i});
- }
- return res;
-}
diff --git a/math/inversionsMerge.cpp b/math/inversionsMerge.cpp
deleted file mode 100644
index 8235b11..0000000
--- a/math/inversionsMerge.cpp
+++ /dev/null
@@ -1,27 +0,0 @@
-// Laufzeit: O(n*log(n))
-ll merge(vector<ll>& v, vector<ll>& left, vector<ll>& right) {
- int a = 0, b = 0, i = 0;
- ll inv = 0;
- while (a < sz(left) && b < sz(right)) {
- if (left[a] < right[b]) v[i++] = left[a++];
- else {
- inv += sz(left) - a;
- v[i++] = right[b++];
- }
- }
- while (a < sz(left)) v[i++] = left[a++];
- while (b < sz(right)) v[i++] = right[b++];
- return inv;
-}
-
-ll mergeSort(vector<ll> &v) { // Sortiert v und gibt Inversionszahl zurück.
- int n = sz(v);
- vector<ll> left(n / 2), right((n + 1) / 2);
- for (int i = 0; i < n / 2; i++) left[i] = v[i];
- for (int i = n / 2; i < n; i++) right[i - n / 2] = v[i];
-
- ll result = 0;
- if (sz(left) > 1) result += mergeSort(left);
- if (sz(right) > 1) result += mergeSort(right);
- return result + merge(v, left, right);
-}
diff --git a/math/kthperm.cpp b/math/kthperm.cpp
deleted file mode 100644
index 899dff1..0000000
--- a/math/kthperm.cpp
+++ /dev/null
@@ -1,14 +0,0 @@
-vector<ll> kthperm(ll k, ll n) {
- Tree<ll> t;
- vector<ll> res(n);
- for (ll i = 1; i <= n; k /= i, i++) {
- t.insert(i - 1);
- res[n - i] = k % i;
- }
- for (ll& x : res) {
- auto it = t.find_by_order(x);
- x = *it;
- t.erase(it);
- }
- return res;
-}
diff --git a/math/legendre.cpp b/math/legendre.cpp
deleted file mode 100644
index f08755f..0000000
--- a/math/legendre.cpp
+++ /dev/null
@@ -1,4 +0,0 @@
-ll legendre(ll a, ll p) {
- ll s = powMod(a, p / 2, p);
- return s < 2 ? s : -1ll;
-}
diff --git a/math/lgsFp.cpp b/math/lgsFp.cpp
deleted file mode 100644
index 7081fea..0000000
--- a/math/lgsFp.cpp
+++ /dev/null
@@ -1,26 +0,0 @@
-void normalLine(int line, ll p) {
- ll factor = multInv(mat[line][line], p);
- for (ll& x : mat[line]) x = (x * factor) % p;
-}
-
-void takeAll(int n, int line, ll p) {
- for (int i = 0; i < n; i++) {
- if (i == line) continue;
- ll diff = mat[i][line];
- for (int j = 0; j <= n; j++) {
- mat[i][j] -= (diff * mat[line][j]) % p;
- mat[i][j] = (mat[i][j] + p) % p;
-}}}
-
-void gauss(int n, ll mod) {
- vector<bool> done(n, false);
- for (int i = 0; i < n; i++) {
- int j = 0;
- while (j < n && (done[j] || mat[j][i] == 0)) j++;
- if (j == n) continue;
- swap(mat[i], mat[j]);
- normalLine(i, mod);
- takeAll(n, i, mod);
- done[i] = true;
-}}
-// für Eindeutigkeit, Existenz etc. siehe LGS über R
diff --git a/math/linearCongruence.cpp b/math/linearCongruence.cpp
deleted file mode 100644
index cdb5a37..0000000
--- a/math/linearCongruence.cpp
+++ /dev/null
@@ -1,5 +0,0 @@
-ll solveLinearCongruence(ll a, ll b, ll m) {
- ll g = gcd(a, m);
- if (b % g != 0) return -1;
- return ((b / g) * multInv(a / g, m / g)) % (m / g);
-}
diff --git a/math/linearRecurence.cpp b/math/linearRecurence.cpp
deleted file mode 100644
index 2501e64..0000000
--- a/math/linearRecurence.cpp
+++ /dev/null
@@ -1,33 +0,0 @@
-constexpr ll mod = 1'000'000'007;
-vector<ll> modMul(const vector<ll>& a, const vector<ll>& b,
- const vector<ll>& c) {
- ll n = sz(c);
- vector<ll> res(n * 2 + 1);
- for (int i = 0; i <= n; i++) { //a*b
- for (int j = 0; j <= n; j++) {
- res[i + j] += a[i] * b[j];
- res[i + j] %= mod;
- }}
- for (int i = 2 * n; i > n; i--) { //res%c
- for (int j = 0; j < n; j++) {
- res[i - 1 - j] += res[i] * c[j];
- res[i - 1 - j] %= mod;
- }}
- res.resize(n + 1);
- return res;
-}
-
-ll kthTerm(const vector<ll>& f, const vector<ll>& c, ll k) {
- assert(sz(f) == sz(c));
- vector<ll> tmp(sz(c) + 1), a(sz(c) + 1);
- tmp[0] = a[1] = 1; //tmp = (x^k) % c
-
- for (k++; k > 0; k /= 2) {
- if (k & 1) tmp = modMul(tmp, a, c);
- a = modMul(a, a, c);
- }
-
- ll res = 0;
- for (int i = 0; i < sz(c); i++) res += (tmp[i+1] * f[i]) % mod;
- return res % mod;
-}
diff --git a/math/linearSieve.cpp b/math/linearSieve.cpp
deleted file mode 100644
index b029b9a..0000000
--- a/math/linearSieve.cpp
+++ /dev/null
@@ -1,49 +0,0 @@
-constexpr ll N = 10'000'000;
-ll smallest[N], power[N], sieved[N];
-vector<ll> primes;
-
-//wird aufgerufen mit (p^k, p, k) für prime p
-ll mu(ll pk, ll p, ll k) {return -(k == 1);}
-ll phi(ll pk, ll p, ll k) {return pk - pk / p;}
-ll div(ll pk, ll p, ll k) {return k+1;}
-ll divSum(ll pk, ll p, ll k) {return (pk*p+1) / (p - 1);}
-ll square(ll pk, ll p, ll k) {return k % 2 ? pk / p : pk;}
-ll squareFree(ll pk, ll p, ll k) {return k % 2 ? pk : 1;}
-
-void sieve() { // O(N)
- smallest[1] = power[1] = sieved[1] = 1;
- for (ll i = 2; i < N; i++) {
- if (smallest[i] == 0) {
- primes.push_back(i);
- for (ll pk = i, k = 1; pk < N; pk *= i, k++) {
- smallest[pk] = i;
- power[pk] = pk;
- sieved[pk] = mu(pk, i, k); // Aufruf ändern!
- }}
- for (ll j = 0; i * primes[j] < N && primes[j] < smallest[i]; j++) {
- ll k = i * primes[j];
- smallest[k] = power[k] = primes[j];
- sieved[k] = sieved[i] * sieved[primes[j]];
- }
- if (i * smallest[i] < N && power[i] != i) {
- ll k = i * smallest[i];
- smallest[k] = smallest[i];
- power[k] = power[i] * smallest[i];
- sieved[k] = sieved[power[k]] * sieved[k / power[k]];
-}}}
-
-ll naive(ll n) { // O(sqrt(n))
- ll res = 1;
- for (ll p = 2; p * p <= n; p++) {
- if (n % p == 0) {
- ll pk = 1;
- ll k = 0;
- do {
- n /= p;
- pk *= p;
- k++;
- } while (n % p == 0);
- res *= mu(pk, p, k); // Aufruf ändern!
- }}
- return res;
-}
diff --git a/math/longestIncreasingSubsequence.cpp b/math/longestIncreasingSubsequence.cpp
deleted file mode 100644
index fcb63b4..0000000
--- a/math/longestIncreasingSubsequence.cpp
+++ /dev/null
@@ -1,17 +0,0 @@
-vector<int> lis(vector<ll>& a) {
- int n = sz(a), len = 0;
- vector<ll> dp(n, INF), dp_id(n), prev(n);
- for (int i = 0; i < n; i++) {
- int pos = lower_bound(all(dp), a[i]) - dp.begin();
- dp[pos] = a[i];
- dp_id[pos] = i;
- prev[i] = pos ? dp_id[pos - 1] : -1;
- len = max(len, pos + 1);
- }
- // reconstruction
- vector<int> res(len);
- for (int x = dp_id[len-1]; len--; x = prev[x]) {
- res[len] = x;
- }
- return res; // indices of one LIS
-}
diff --git a/math/math.tex b/math/math.tex
deleted file mode 100644
index c157e1b..0000000
--- a/math/math.tex
+++ /dev/null
@@ -1,535 +0,0 @@
-\section{Mathe}
-
-\begin{algorithm}{Zykel Erkennung}
- \begin{methods}
- \method{cycleDetection}{findet Zyklus von $x_0$ und Länge in $f$}{b+l}
- \end{methods}
- \sourcecode{math/cycleDetection.cpp}
-\end{algorithm}
-
-\begin{algorithm}{Longest Increasing Subsequence}
- \begin{itemize}
- \item \code{lower\_bound} $\Rightarrow$ streng monoton
- \item \code{upper\_bound} $\Rightarrow$ monoton
- \end{itemize}
- \sourcecode{math/longestIncreasingSubsequence.cpp}
-\end{algorithm}
-
-\begin{algorithm}{Permutationen}
- \begin{methods}
- \method{kthperm}{findet $k$-te Permutation \big($k \in [0, n!$)\big)}{n\*\log(n)}
- \end{methods}
- \sourcecode{math/kthperm.cpp}
- \begin{methods}
- \method{permIndex}{bestimmt Index der Permutation \big($\mathit{res} \in [0, n!$)\big)}{n\*\log(n)}
- \end{methods}
- \sourcecode{math/permIndex.cpp}
-\end{algorithm}
-\clearpage
-
-\subsection{Mod-Exponent und Multiplikation über $\boldsymbol{\mathbb{F}_p}$}
-%\vspace{-1.25em}
-%\begin{multicols}{2}
-\method{mulMod}{berechnet $a \cdot b \bmod n$}{\log(b)}
-\sourcecode{math/modMulIterativ.cpp}
-% \vfill\null\columnbreak
-\method{powMod}{berechnet $a^b \bmod n$}{\log(b)}
-\sourcecode{math/modPowIterativ.cpp}
-%\end{multicols}
-%\vspace{-2.75em}
-\begin{itemize}
- \item für $a > 10^9$ \code{__int128} oder \code{modMul} benutzten!
-\end{itemize}
-
-\begin{algorithm}{ggT, kgV, erweiterter euklidischer Algorithmus}
- \runtime{\log(a) + \log(b)}
- \sourcecode{math/extendedEuclid.cpp}
-\end{algorithm}
-
-\subsection{Multiplikatives Inverses von $\boldsymbol{x}$ in $\boldsymbol{\mathbb{Z}/m\mathbb{Z}}$}
-\textbf{Falls $\boldsymbol{m}$ prim:}\quad $x^{-1} \equiv x^{m-2} \bmod m$
-
-\textbf{Falls $\boldsymbol{\ggT(x, m) = 1}$:}
-\begin{itemize}
- \item Erweiterter euklidischer Algorithmus liefert $\alpha$ und $\beta$ mit
- $\alpha x + \beta m = 1$.
- \item Nach Kongruenz gilt $\alpha x + \beta m \equiv \alpha x \equiv 1 \bmod m$.
- \item $x^{-1} :\equiv \alpha \bmod m$
-\end{itemize}
-\textbf{Sonst $\boldsymbol{\ggT(x, m) > 1}$:}\quad Es existiert kein $x^{-1}$.
-% \sourcecode{math/multInv.cpp}
-\sourcecode{math/shortModInv.cpp}
-
-\paragraph{Lemma von \textsc{Bézout}}
-Sei $(x, y)$ eine Lösung der diophantischen Gleichung $ax + by = d$.
-Dann lassen sich wie folgt alle Lösungen berechnen:
-\[
-\left(x + k\frac{b}{\ggT(a, b)},~y - k\frac{a}{\ggT(a, b)}\right)
-\]
-
-\paragraph{\textsc{Pell}-Gleichungen}
-Sei $(\overline{x}, \overline{y})$ die Lösung von $x^2 - ny^2 = 1$, die $x>1$ minimiert.
-Sei $(\tilde{x}, \tilde{y})$ die Lösung von $x^2-ny^2 = c$, die $x>1$ minimiert. Dann lassen
-sich alle Lösungen von $x^2-ny^2=c$ berechnen durch:
-\begin{align*}
- x_1&\coloneqq \tilde{x}, & y_1&\coloneqq\tilde{y}\\
- x_{k+1}&\coloneqq \overline{x}x_k+n\overline{y}y_k, & y_{k+1}&\coloneqq\overline{x}y_k+\overline{y}x_k
-\end{align*}
-
-\begin{algorithm}{Lineare Kongruenz}
- \begin{itemize}
- \item Löst $ax\equiv b\pmod{m}$.
- \item Weitere Lösungen unterscheiden sich um \raisebox{2pt}{$\frac{m}{g}$}, es gibt
- also $g$ Lösungen modulo $m$.
- \end{itemize}
- \sourcecode{math/linearCongruence.cpp}
-\end{algorithm}
-
-\begin{algorithm}{Chinesischer Restsatz}
- \begin{itemize}
- \item Extrem anfällig gegen Overflows. Evtl. häufig 128-Bit Integer verwenden.
- \item Direkte Formel für zwei Kongruenzen $x \equiv a \bmod n$, $x \equiv b \bmod m$:
- \[
- x \equiv a - y \cdot n \cdot \frac{a - b}{d} \bmod \frac{mn}{d}
- \qquad \text{mit} \qquad
- d := \ggT(n, m) = yn + zm
- \]
- Formel kann auch für nicht teilerfremde Moduli verwendet werden.
- Sind die Moduli nicht teilerfremd, existiert genau dann eine Lösung,
- wenn $a\equiv~b \bmod \ggT(m, n)$.
- In diesem Fall sind keine Faktoren
- auf der linken Seite erlaubt.
- \end{itemize}
- \sourcecode{math/chineseRemainder.cpp}
-\end{algorithm}
-
-\begin{algorithm}{Primzahltest \& Faktorisierung}
- \method{isPrime}{prüft ob Zahl prim ist}{\log(n)^2}
- \sourcecode{math/millerRabin.cpp}
- \method{rho}{findet zufälligen Teiler}{\sqrt[\leftroot{3}\uproot{2}4]{n}}
- \sourcecode{math/rho.cpp}
- %\method{squfof}{findet zufälligen Teiler}{\sqrt[\leftroot{4}\uproot{2}4]{n}}
- %\sourcecode{math/squfof.cpp}
-\end{algorithm}
-
-\begin{algorithm}{Teiler}
- \begin{methods}
- \method{countDivisors}{Zählt Teiler von $n$}{\sqrt[\leftroot{3}\uproot{2}3]{n}}
- \end{methods}
- \sourcecode{math/divisors.cpp}
-\end{algorithm}
-
-\begin{algorithm}{Numerisch Extremstelle bestimmen}
- \sourcecode{math/goldenSectionSearch.cpp}
-\end{algorithm}
-
-\begin{algorithm}{Numerisch Integrieren, Simpsonregel}
- \sourcecode{math/simpson.cpp}
-\end{algorithm}
-
-\begin{algorithm}{Diskreter Logarithmus}
- \begin{methods}
- \method{solve}{bestimmt Lösung $x$ für $a^x=b \bmod m$}{\sqrt{m}\*\log(m)}
- \end{methods}
- \sourcecode{math/discreteLogarithm.cpp}
-\end{algorithm}
-%TODO
-\begin{algorithm}{Diskrete \textrm{\textit{n}}-te Wurzel}
- \begin{methods}
- \method{root}{bestimmt Lösung $x$ für $x^a=b \bmod m$ }{\sqrt{m}\*\log(m)}
- \end{methods}
- Alle Lösungen haben die Form $g^{c + \frac{i \cdot \phi(n)}{\gcd(a, \phi(n))}}$
- \sourcecode{math/discreteNthRoot.cpp}
-\end{algorithm}
-
-
-\begin{algorithm}{Primitivwurzeln}
- \begin{itemize}
- \item Primitivwurzel modulo $n$ existiert $\Leftrightarrow$ $n \in \{2,\ 4,\ p^\alpha,\ 2\cdot p^\alpha \mid\ 2 < p \in \mathbb{P},\ \alpha \in \mathbb{N}\}$
- \item es existiert entweder keine oder $\varphi(\varphi(n))$ inkongruente Primitivwurzeln
- \item Sei $g$ Primitivwurzel modulo $n$.
- Dann gilt:\newline
- Das kleinste $k$, sodass $g^k \equiv 1 \bmod n$, ist $k = \varphi(n)$.
- \end{itemize}
- \begin{methods}
- \method{isPrimitive}{prüft ob $g$ eine Primitivwurzel ist}{\log(\varphi(n))\*\log(n)}
- \method{findPrimitive}{findet Primitivwurzel (oder -1)}{\abs{ans}\*\log(\varphi(n))\*\log(n)}
- \end{methods}
- \sourcecode{math/primitiveRoot.cpp}
-\end{algorithm}
-
-\begin{algorithm}{Linearessieb und Multiplikative Funktionen}
- Eine (zahlentheoretische) Funktion $f$ heißt multiplikativ wenn $f(1)=1$ und $f(a\cdot b)=f(a)\cdot f(b)$, falls $\ggT(a,b)=1$.
-
- $\Rightarrow$ Es ist ausreichend $f(p^k)$ für alle primen $p$ und alle $k$ zu kennen.
-
- \begin{methods}
- \method{sieve}{berechnet Primzahlen und co.}{N}
- \method{sieved}{Wert der endsprechenden Multiplikativen Funktion}{1}
-
- \method{naive}{Wert der endsprechenden Multiplikativen Funktion}{\sqrt{n}}
- \end{methods}
- \textbf{Wichtig:} Sieb rechts ist schneller für \code{isPrime} oder \code{primes}!
-
- \sourcecode{math/linearSieve.cpp}
- \textbf{\textsc{Möbius}-Funtkion:}
- \begin{itemize}
- \item $\mu(n)=+1$, falls $n$ quadratfrei ist und gerade viele Primteiler hat
- \item $\mu(n)=-1$, falls $n$ quadratfrei ist und ungerade viele Primteiler hat
- \item $\mu(n)=0$, falls $n$ nicht quadratfrei ist
- \end{itemize}
-
- \textbf{\textsc{Euler}sche $\boldsymbol{\varphi}$-Funktion:}
- \begin{itemize}
- \item Zählt die relativ primen Zahlen $\leq n$.
- \item $p$ prim, $k \in \mathbb{N}$:
- $~\varphi(p^k) = p^k - p^{k - 1}$
-
- \item \textbf{Euler's Theorem:}
- Für $b \geq \varphi(c)$ gilt: $a^b \equiv a^{b \bmod \varphi(c) + \varphi(c)} \pmod{c}$. Darüber hinaus gilt: $\gcd(a, c) = 1 \Leftrightarrow a^b \equiv a^{b \bmod \varphi(c)} \pmod{c}$.
- Falls $m$ prim ist, liefert das den \textbf{kleinen Satz von \textsc{Fermat}}:
- $a^{m} \equiv a \pmod{m}$
- \end{itemize}
-\end{algorithm}
-
-\begin{algorithm}{Primzahlsieb von \textsc{Eratosthenes}}
- \begin{itemize}
- \item Bis $10^8$ in unter 64MB Speicher (lange Berechnung)
- \end{itemize}
- \begin{methods}
- \method{primeSieve}{berechnet Primzahlen und Anzahl}{N\*\log(\log(N))}
- \method{isPrime}{prüft ob Zahl prim ist}{1}
- \end{methods}
- \sourcecode{math/primeSieve.cpp}
-\end{algorithm}
-
-\begin{algorithm}{\textsc{Möbius}-Inversion}
- \begin{itemize}
- \item Seien $f,g : \mathbb{N} \to \mathbb{N}$ und $g(n) := \sum_{d \vert n}f(d)$.
- Dann ist $f(n) = \sum_{d \vert n}g(d)\mu(\frac{n}{d})$.
- \item $\sum\limits_{d \vert n}\mu(d) =
- \begin{cases*}
- 1 & falls $n = 1$\\
- 0 & sonst
- \end{cases*}$
- \end{itemize}
- \textbf{Beispiel Inklusion/Exklusion:}
- Gegeben sein eine Sequenz $A={a_1,\ldots,a_n}$ von Zahlen, $1 \leq a_i \leq N$. Zähle die Anzahl der \emph{coprime subsequences}.\newline
- \textbf{Lösung}:
- Für jedes $x$, sei $cnt[x]$ die Anzahl der Vielfachen von $x$ in $A$.
- Es gibt $2^{[x]}-1$ nicht leere Subsequences in $A$, die nur Vielfache von $x$ enthalten.
- Die Anzahl der Subsequences mit $\ggT=1$ ist gegeben durch $\sum_{i = 1}^N \mu(i) \cdot (2^{cnt[i]} - 1)$.
- %\sourcecode{math/mobius.cpp}
-\end{algorithm}
-
-\optional{
-\columnbreak
-\subsection{\textsc{Euler}sche $\boldsymbol{\varphi}$-Funktion}
-\begin{itemize}
- \item Zählt die relativ primen Zahlen $\leq n$.
-
- \item Multiplikativ:
- $\gcd(a,b) = 1 \Longrightarrow \varphi(a) \cdot \varphi(b) = \varphi(ab)$
-
- \item $p$ prim, $k \in \mathbb{N}$:
- $~\varphi(p^k) = p^k - p^{k - 1}$
-
- \item \textbf{\textsc{Euler}'s Theorem:}
- Für $b \geq \varphi(c)$ gilt: $a^b \equiv a^{b \bmod \varphi(c) + \varphi(c)} \pmod{c}$. Darüber hinaus gilt: $\gcd(a, c) = 1 \Leftrightarrow a^b \equiv a^{b \bmod \varphi(c)} \pmod{c}$.
- Falls $m$ prim ist, liefert das den \textbf{kleinen Satz von \textsc{Fermat}}:
- $a^{m} \equiv a \pmod{m}$
-\end{itemize}
-\sourcecode{math/phi.cpp}
-}
-
-\begin{algorithm}{Polynome, FFT, NTT \& andere Transformationen}
- Multipliziert Polynome $A$ und $B$.
- \begin{itemize}
- \item $\deg(A \cdot B) = \deg(A) + \deg(B)$
- \item Vektoren \code{a} und \code{b} müssen mindestens Größe
- $\deg(A \cdot B) + 1$ haben.
- Größe muss eine Zweierpotenz sein.
- \item Für ganzzahlige Koeffizienten: \code{(ll)round(real(a[i]))}
- \item \emph{xor}, \emph{or} und \emph{and} Transform funktioniert auch mit \code{double} oder modulo einer Primzahl $p$ falls $p \geq 2^{\texttt{bits}}$
- \end{itemize}
- %\lstinputlisting{math/fft.cpp}
- %\lstinputlisting{math/ntt.cpp}
- %\textcolor{safeOrange}{$\blacksquare$} NTT code, %\textcolor{safeGreen}{$\blacksquare$} FFT code
- \sourcecode{math/transforms/fft.cpp}
- \sourcecode{math/transforms/ntt.cpp}
- \vfill\null
- \columnbreak
- \sourcecode{math/transforms/bitwiseTransforms.cpp}
- Multiplikation mit 2 transforms statt 3: (nur benutzten wenn nötig!)
- \sourcecode{math/transforms/fftMul.cpp}
-\end{algorithm}
-
-\begin{algorithm}{Operations on Formal Power Series}
- \sourcecode{math/transforms/seriesOperations.cpp}
-\end{algorithm}
-
-\subsection{LGS über $\boldsymbol{\mathbb{F}_p}$}
-\method{gauss}{löst LGS}{n^3}
-\sourcecode{math/lgsFp.cpp}
-
-\subsection{LGS über $\boldsymbol{\mathbb{R}}$}
-\method{gauss}{löst LGS}{n^3}
-\sourcecode{math/gauss.cpp}
-
-\begin{algorithm}{\textsc{Legendre}-Symbol}
- Sei $p \geq 3$ eine Primzahl, $a \in \mathbb{Z}$:
- \begin{align*}
- \legendre{a}{p} &=
- \begin{cases*}
- \hphantom{-}0 & falls $p~\vert~a$ \\[-1ex]
- \hphantom{-}1 & falls $\exists x \in \mathbb{Z}\backslash p\mathbb{Z} : a \equiv x^2 \bmod p$ \\[-1ex]
- -1 & sonst
- \end{cases*} \\
- \legendre{-1}{p} = (-1)^{\frac{p - 1}{2}} &=
- \begin{cases*}
- \hphantom{-}1 & falls $p \equiv 1 \bmod 4$ \\[-1ex]
- -1 & falls $p \equiv 3 \bmod 4$
- \end{cases*} \\
- \legendre{2}{p} = (-1)^{\frac{p^2 - 1}{8}} &=
- \begin{cases*}
- \hphantom{-}1 & falls $p \equiv \pm 1 \bmod 8$ \\[-1ex]
- -1 & falls $p \equiv \pm 3 \bmod 8$
- \end{cases*}
- \end{align*}
- \begin{align*}
- \legendre{p}{q} \cdot \legendre{q}{p} = (-1)^{\frac{p - 1}{2} \cdot \frac{q - 1}{2}} &&
- \legendre{a}{p} \equiv a^{\frac{p-1}{2}}\bmod p
- \end{align*}
- \sourcecode{math/legendre.cpp}
-\end{algorithm}
-
-\optional{
-\subsection{Primzahlzählfunktion $\boldsymbol{\pi}$}
-\begin{methods}
- \method{init}{berechnet $\pi$ bis $N$}{N\*\log(\log(N))}
- \method{phi}{zählt zu $p_i$ teilerfremde Zahlen $\leq n$ für alle $i \leq k$}{???}
- \method{pi}{zählt Primzahlen $\leq n$ ($n < N^2$)}{n^{2/3}}
-\end{methods}
-\sourcecode{math/piLehmer.cpp}
-}
-
-\begin{algorithm}{Lineare Rekurrenz}
- \begin{methods}
- \method{BerlekampMassey}{Berechnet eine lineare Rekurrenz $n$-ter Ordnung}{n^2}
- \method{}{aus den ersten $2n$ Werte}{}
- \end{methods}
- \sourcecode{math/berlekampMassey.cpp}
- Sei $f(n)=c_{n-1}f(n-1)+c_{n-2}f(n-2)+\dots + c_0f(0)$ eine lineare Rekurrenz.
-
- \begin{methods}
- \method{kthTerm}{Berechnet $k$-ten Term einer Rekurrenz $n$-ter Ordnung}{\log(k)\cdot n^2}
- \end{methods}
- \sourcecode{math/linearRecurence.cpp}
- Alternativ kann der \mbox{$k$-te} Term in \runtime{n^3\log(k)} berechnet werden:
- $$\renewcommand\arraystretch{1.5}
- \setlength\arraycolsep{3pt}
- \begin{pmatrix}
- c_{n-1} & c_{n-2} & \smash{\cdots} & \smash{\cdots} & c_0 \\
- 1 & 0 & \smash{\cdots} & \smash{\cdots} & 0 \\
- 0 & \smash{\ddots} & \smash{\ddots} & & \smash{\vdots} \\
- \smash{\vdots} & \smash{\ddots} & \smash{\ddots} & \smash{\ddots} & \smash{\vdots} \\
- 0 & \smash{\cdots} & 0 & 1 & 0 \\
- \end{pmatrix}^k
- \times~~
- \begin{pmatrix}
- f(n-1) \\
- f(n-2) \\
- \smash{\vdots} \\
- \smash{\vdots} \\
- f(0) \\
- \end{pmatrix}
- ~~=~~
- \begin{pmatrix}
- f(n-1+k) \\
- f(n-2+k) \\
- \smash{\vdots} \\
- \smash{\vdots} \\
- f(k) \makebox[0pt][l]{\hspace{15pt}$\vcenter{\hbox{\huge$\leftarrow$}}$}\\
- \end{pmatrix}
- $$
-\end{algorithm}
-
-\begin{algorithm}{Matrix-Exponent}
- \begin{methods}
- \method{precalc}{berechnet $m^{2^b}$ vor}{\log(b)\*n^3}
- \method{calc}{berechnet $m^b_{y,x}$}{\log(b)\cdot n^2}
- \end{methods}
- \sourcecode{math/matrixPower.cpp}
-\end{algorithm}
-
-\begin{algorithm}{Inversionszahl}
- \sourcecode{math/inversions.cpp}
-\end{algorithm}
-
-\subsection{Satz von \textsc{Sprague-Grundy}}
-Weise jedem Zustand $X$ wie folgt eine \textsc{Grundy}-Zahl $g\left(X\right)$ zu:
-\[
-g\left(X\right) := \min\left\{
-\mathbb{Z}_0^+ \setminus
-\left\{g\left(Y\right) \mid Y \text{ von } X \text{ aus direkt erreichbar}\right\}
-\right\}
-\]
-$X$ ist genau dann gewonnen, wenn $g\left(X\right) > 0$ ist.\\
-Wenn man $k$ Spiele in den Zuständen $X_1, \ldots, X_k$ hat, dann ist die \textsc{Grundy}-Zahl des Gesamtzustandes $g\left(X_1\right) \oplus \ldots \oplus g\left(X_k\right)$.
-
-\subsection{Kombinatorik}
-
-\paragraph{Wilsons Theorem}
-A number $n$ is prime if and only if
-$(n-1)!\equiv -1\bmod{n}$.\\
-($n$ is prime if and only if $(m-1)!\cdot(n-m)!\equiv(-1)^m\bmod{n}$ for all $m$ in $\{1,\dots,n\}$)
-\begin{align*}
- (n-1)!\equiv\begin{cases}
- -1\bmod{n},&\mathrm{falls}~n \in \mathbb{P}\\
- \hphantom{-}2\bmod{n},&\mathrm{falls}~n = 4\\
- \hphantom{-}0\bmod{n},&\mathrm{sonst}
- \end{cases}
-\end{align*}
-
-\paragraph{\textsc{Zeckendorfs} Theorem}
-Jede positive natürliche Zahl kann eindeutig als Summe einer oder mehrerer
-verschiedener \textsc{Fibonacci}-Zahlen geschrieben werden, sodass keine zwei
-aufeinanderfolgenden \textsc{Fibonacci}-Zahlen in der Summe vorkommen.\\
-\emph{Lösung:} Greedy, nimm immer die größte \textsc{Fibonacci}-Zahl, die noch
-hineinpasst.
-
-\paragraph{\textsc{Lucas}-Theorem}
-Ist $p$ prim, $m=\sum_{i=0}^km_ip^i$, $n=\sum_{i=0}^kn_ip^i$ ($p$-adische Darstellung),
-so gilt
-\vspace{-0.75\baselineskip}
-\[
- \binom{m}{n} \equiv \prod_{i=0}^k\binom{m_i}{n_i} \bmod{p}.
-\]
-
-%\begin{algorithm}{Binomialkoeffizienten}
-\paragraph{Binomialkoeffizienten}
- Die Anzahl der \mbox{$k$-elementigen} Teilmengen einer \mbox{$n$-elementigen} Menge.
-
- \begin{methods}
- \method{precalc}{berechnet $n!$ und $n!^{-1}$ vor}{\mathit{lim}}
- \method{calc\_binom}{berechnet Binomialkoeffizient}{1}
- \end{methods}
- \sourcecode{math/binomial0.cpp}
- Falls $n >= p$ for $\mathit{mod}=p^k$ berechne \textit{fac} und \textit{inv} aber teile $p$ aus $i$ und berechne die häufigkeit von $p$ in $n!$ als $\sum\limits_{i=1}\big\lfloor\frac{n}{p^i}\big\rfloor$
-
- \begin{methods}
- \method{calc\_binom}{berechnet Binomialkoeffizient $(n \le 61)$}{k}
- \end{methods}
- \sourcecode{math/binomial1.cpp}
-
- \begin{methods}
- \method{calc\_binom}{berechnet Binomialkoeffizient modulo Primzahl $p$}{p-n}
- \end{methods}
- \sourcecode{math/binomial3.cpp}
-
-% \begin{methods}
-% \method{calc\_binom}{berechnet Primfaktoren vom Binomialkoeffizient}{n}
-% \end{methods}
-% \textbf{WICHTIG:} braucht alle Primzahlen $\leq n$
-% \sourcecode{math/binomial2.cpp}
-%\end{algorithm}
-
-\paragraph{\textsc{Catalan}-Zahlen}
-\begin{itemize}
- \item Die \textsc{Catalan}-Zahl $C_n$ gibt an:
- \begin{itemize}
- \item Anzahl der Binärbäume mit $n$ nicht unterscheidbaren Knoten.
- \item Anzahl der validen Klammerausdrücke mit $n$ Klammerpaaren.
- \item Anzahl der korrekten Klammerungen von $n+1$ Faktoren.
- \item Anzahl Möglichkeiten ein konvexes Polygon mit $n + 2$ Ecken zu triangulieren.
- \item Anzahl der monotonen Pfade (zwischen gegenüberliegenden Ecken) in
- einem $n \times n$-Gitter, die nicht die Diagonale kreuzen.
- \end{itemize}
-\end{itemize}
-\[C_0 = 1\qquad C_n = \sum\limits_{k = 0}^{n - 1} C_kC_{n - 1 - k} =
-\frac{1}{n + 1}\binom{2n}{n} = \frac{4n - 2}{n+1} \cdot C_{n-1}\]
-\begin{itemize}
- \item Formel $1$ erlaubt Berechnung ohne Division in \runtime{n^2}
- \item Formel $2$ und $3$ erlauben Berechnung in \runtime{n}
-\end{itemize}
-
-\paragraph{\textsc{Catalan}-Convolution}
-\begin{itemize}
- \item Anzahl an Klammerausdrücken mit $n+k$ Klammerpaaren, die mit $(^k$ beginnen.
-\end{itemize}
-\[C^k_0 = 1\qquad C^k_n = \sum\limits_{\mathclap{a_0+a_1+\dots+a_k=n}} C_{a_0}C_{a_1}\cdots C_{a_k} =
-\frac{k+1}{n+k+1}\binom{2n+k}{n} = \frac{(2n+k-1)\cdot(2n+k)}{n(n+k+1)} \cdot C_{n-1}\]
-
-\paragraph{\textsc{Euler}-Zahlen 1. Ordnung}
-Die Anzahl der Permutationen von $\{1, \ldots, n\}$ mit genau $k$ Anstiegen.
-Für die $n$-te Zahl gibt es $n$ mögliche Positionen zum Einfügen.
-Dabei wird entweder ein Anstieg in zwei gesplitted oder ein Anstieg um $n$ ergänzt.
-\[\eulerI{n}{0} = \eulerI{n}{n-1} = 1 \quad
-\eulerI{n}{k} = (k+1) \eulerI{n-1}{k} + (n-k) \eulerI{n-1}{k-1}=
-\sum_{i=0}^{k} (-1)^i\binom{n+1}{i}(k+1-i)^n\]
-\begin{itemize}
- \item Formel $1$ erlaubt Berechnung ohne Division in \runtime{n^2}
- \item Formel $2$ erlaubt Berechnung in \runtime{n\log(n)}
-\end{itemize}
-
-\paragraph{\textsc{Euler}-Zahlen 2. Ordnung}
-Die Anzahl der Permutationen von $\{1,1, \ldots, n,n\}$ mit genau $k$ Anstiegen.
-\[\eulerII{n}{0} = 1 \qquad\eulerII{n}{n} = 0 \qquad\eulerII{n}{k} = (k+1) \eulerII{n-1}{k} + (2n-k-1) \eulerII{n-1}{k-1}\]
-\begin{itemize}
- \item Formel erlaubt Berechnung ohne Division in \runtime{n^2}
-\end{itemize}
-
-\paragraph{\textsc{Stirling}-Zahlen 1. Ordnung}
-Die Anzahl der Permutationen von $\{1, \ldots, n\}$ mit genau $k$ Zyklen.
-Es gibt zwei Möglichkeiten für die $n$-te Zahl. Entweder sie bildet einen eigene Zyklus, oder sie kann an jeder Position in jedem Zyklus einsortiert werden.
-\[\stirlingI{0}{0} = 1 \qquad
-\stirlingI{n}{0} = \stirlingI{0}{n} = 0 \qquad
-\stirlingI{n}{k} = \stirlingI{n-1}{k-1} + (n-1) \stirlingI{n-1}{k}\]
-\begin{itemize}
- \item Formel erlaubt berechnung ohne Division in \runtime{n^2}
-\end{itemize}
-\[\sum_{k=0}^{n}\pm\stirlingI{n}{k}x^k=x(x-1)(x-2)\cdots(x-n+1)\]
-\begin{itemize}
- \item Berechne Polynom mit FFT und benutzte betrag der Koeffizienten \runtime{n\log(n)^2} (nur ungefähr gleich große Polynome zusammen multiplizieren beginnend mit $x-k$)
-\end{itemize}
-
-\paragraph{\textsc{Stirling}-Zahlen 2. Ordnung}
-Die Anzahl der Möglichkeiten $n$ Elemente in $k$ nichtleere Teilmengen zu zerlegen.
-Es gibt $k$ Möglichkeiten die $n$ in eine $n-1$-Partition einzuordnen.
-Dazu kommt der Fall, dass die $n$ in ihrer eigenen Teilmenge (alleine) steht.
-\[\stirlingII{n}{1} = \stirlingII{n}{n} = 1 \qquad
-\stirlingII{n}{k} = k \stirlingII{n-1}{k} + \stirlingII{n-1}{k-1} =
-\frac{1}{k!} \sum\limits_{i=0}^{k} (-1)^{k-i}\binom{k}{i}i^n\]
-\begin{itemize}
- \item Formel $1$ erlaubt Berechnung ohne Division in \runtime{n^2}
- \item Formel $2$ erlaubt Berechnung in \runtime{n\log(n)}
-\end{itemize}
-
-\paragraph{\textsc{Bell}-Zahlen}
-Anzahl der Partitionen von $\{1, \ldots, n\}$.
-Wie \textsc{Stirling}-Zahlen 2. Ordnung ohne Limit durch $k$.
-\[B_1 = 1 \qquad
-B_n = \sum\limits_{k = 0}^{n - 1} B_k\binom{n-1}{k}
-= \sum\limits_{k = 0}^{n}\stirlingII{n}{k}\qquad\qquad B_{p^m+n}\equiv m\cdot B_n + B_{n+1} \bmod{p}\]
-
-\paragraph{Partitions}
-Die Anzahl der Partitionen von $n$ in genau $k$ positive Summanden.
-Die Anzahl der Partitionen von $n$ mit Elementen aus ${1,\dots,k}$.
-\begin{align*}
- p_0(0)=1 \qquad p_k(n)&=0 \text{ für } k > n \text{ oder } n \leq 0 \text{ oder } k \leq 0\\
- p_k(n)&= p_k(n-k) + p_{k-1}(n-1)\\[2pt]
- p(n)&=\sum_{k=1}^{n} p_k(n)=p_n(2n)=\sum\limits_{k\neq0}^\infty(-1)^{k+1}p\bigg(n - \frac{k(3k-1)}{2}\bigg)
-\end{align*}
-\begin{itemize}
- \item in Formel $3$ kann abgebrochen werden wenn $\frac{k(3k-1)}{2} > n$.
- \item Die Anzahl der Partitionen von $n$ in bis zu $k$ positive Summanden ist $\sum\limits_{i=0}^{k}p_i(n)=p_k(n+k)$.
-\end{itemize}
-
-\subsection{The Twelvefold Way \textnormal{(verteile $n$ Bälle auf $k$ Boxen)}}
-\input{math/tables/twelvefold}
-
-%\input{math/tables/numbers}
-
-\begin{algorithm}[optional]{Big Integers}
- \sourcecode{math/bigint.cpp}
-\end{algorithm}
diff --git a/math/matrixPower.cpp b/math/matrixPower.cpp
deleted file mode 100644
index 05e29f6..0000000
--- a/math/matrixPower.cpp
+++ /dev/null
@@ -1,16 +0,0 @@
-vector<mat> pows;
-
-void precalc(mat m) {
- pows = {mat(1), m};
- for (int i = 1; i < 60; i++) pows.push_back(pows[i] * pows[i]);
-}
-
-ll calc(int x, int y, ll b) {
- vector<ll> v(pows[0].m.size());
- v[x] = 1;
- for (ll i = 1; b > 0; i++) {
- if (b & 1) v = pows[i] * v;
- b /= 2;
- }
- return v[y];
-}
diff --git a/math/millerRabin.cpp b/math/millerRabin.cpp
deleted file mode 100644
index cb27d29..0000000
--- a/math/millerRabin.cpp
+++ /dev/null
@@ -1,19 +0,0 @@
-constexpr ll bases32[] = {2, 7, 61};
-constexpr ll bases64[] = {2, 325, 9375, 28178, 450775,
- 9780504, 1795265022};
-bool isPrime(ll n) {
- if (n < 2 || n % 2 == 0) return n == 2;
- ll d = n - 1, j = 0;
- while (d % 2 == 0) d /= 2, j++;
- for (ll a : bases64) {
- if (a % n == 0) continue;
- ll v = powMod(a, d, n); //with mulmod or int128
- if (v == 1 || v == n - 1) continue;
- for (ll i = 1; i <= j; i++) {
- v = ((lll)v * v) % n;
- if (v == n - 1 || v <= 1) break;
- }
- if (v != n - 1) return false;
- }
- return true;
-}
diff --git a/math/mobius.cpp b/math/mobius.cpp
deleted file mode 100644
index 3fb4d9e..0000000
--- a/math/mobius.cpp
+++ /dev/null
@@ -1,21 +0,0 @@
-ll mu(ll n) { // Laufzeit: O(sqrt(n));
- ll res = 1;
- for (ll i = 2; i * i <= n; i++) {
- if (n % i == 0) { // Optimierung: Nur Primzahlen
- if (n % (i * i) == 0) return 0;
- res *= -1;
- n /= i;
- }}
- return n > 1 ? -res : res;
-}
-
-// berechnet Möbiusfunktion. Laufzeit: O(N*log(log(N)))
-vector<int> mu(n + 1, 1);
-for (ll i = 2; i <= n; i++) {
- if (mu[i] == 1) {
- for (ll j = i; j <= n; j += i) mu[j] *= -2;
- for (ll j = i*i; j <= n; j += i*i) mu[j] = 0;
- }
- // log2(abs(mu[i])) = number of primes
- mu[i] = (mu[i] > 0) - (mu[i] < 0);
-}
diff --git a/math/modExp.cpp b/math/modExp.cpp
deleted file mode 100644
index 2329a94..0000000
--- a/math/modExp.cpp
+++ /dev/null
@@ -1,6 +0,0 @@
-ll powMod(ll a, ll b, ll n) {
- if(b == 0) return 1;
- if(b == 1) return a % n;
- if(b & 1) return (powMod(a, b - 1, n) * a) % n;
- else return powMod((a * a) % n, b / 2, n);
-}
diff --git a/math/modMulIterativ.cpp b/math/modMulIterativ.cpp
deleted file mode 100644
index 611f09a..0000000
--- a/math/modMulIterativ.cpp
+++ /dev/null
@@ -1,9 +0,0 @@
-ll mulMod(ll a, ll b, ll n) {
- ll res = 0;
- while (b > 0) {
- if (b & 1) res = (a + res) % n;
- a = (a * 2) % n;
- b /= 2;
- }
- return res;
-}
diff --git a/math/modPowIterativ.cpp b/math/modPowIterativ.cpp
deleted file mode 100644
index 0dc3fb1..0000000
--- a/math/modPowIterativ.cpp
+++ /dev/null
@@ -1,9 +0,0 @@
-ll powMod(ll a, ll b, ll n) {
- ll res = 1;
- while (b > 0) {
- if (b & 1) res = (a * res) % n;
- a = (a * a) % n;
- b /= 2;
- }
- return res;
-}
diff --git a/math/modSqrt.cpp b/math/modSqrt.cpp
deleted file mode 100644
index 367c6c7..0000000
--- a/math/modSqrt.cpp
+++ /dev/null
@@ -1,23 +0,0 @@
-ll sqrtMod(ll a, ll p) {
- assert(powMod(a, (p + 1)/2, p) == 1); //a ist ein quadrat mod p?
- if (p % 4 == 3) return powMod(a, (p + 1)/2, p);
- if (p % 8 == 5) return powMod(a, (p + 3)/8, p);
- ll s = p - 1;
- ll r = 0;
- while (s % 2 == 0) s /= 2, r++;
- ll n = 2;
- while (powMod(n, (p - 1)/2, p) != p - 1) n++;
- ll x = powMod(a, (s + 1)/2, p);
- ll b = powMod(a, s, p);
- ll g = powMod(n, s, p);
- while (true) {
- ll t = b;
- ll m = 0;
- for (;m < r && t != 1; m++) t = (t * t) % p;
- if (t == 1) return x;
- ll gs = powMod(g, 1ll << (r - m - 1), p);
- g = (gs * gs) % p;
- x = (x * gs) % p;
- b = (b * g) % p;
- r = m;
-}}
diff --git a/math/multInv.cpp b/math/multInv.cpp
deleted file mode 100644
index 647dc2d..0000000
--- a/math/multInv.cpp
+++ /dev/null
@@ -1,4 +0,0 @@
-ll multInv(ll x, ll m) {
- auto [d, a, b] = extendedEuclid(x, m); // Implementierung von oben.
- return ((a % m) + m) % m;
-}
diff --git a/math/permIndex.cpp b/math/permIndex.cpp
deleted file mode 100644
index 4cffc12..0000000
--- a/math/permIndex.cpp
+++ /dev/null
@@ -1,13 +0,0 @@
-ll permIndex(vector<ll> v) {
- Tree<ll> t;
- reverse(all(v));
- for (ll& x : v) {
- t.insert(x);
- x = t.order_of_key(x);
- }
- ll res = 0;
- for (int i = sz(v); i > 0; i--) {
- res = res * i + v[i - 1];
- }
- return res;
-}
diff --git a/math/phi.cpp b/math/phi.cpp
deleted file mode 100644
index 482a139..0000000
--- a/math/phi.cpp
+++ /dev/null
@@ -1,21 +0,0 @@
-ll phi(ll n) { // Laufzeit: O(sqrt(n))
- // Optimierung: Falls n prim, n - 1 zurückgeben
- ll result = n;
- for(ll i = 2; i * i <= n; ++i) {
- if(n % i == 0) { // Optimierung: Nur Primzahlen
- while(n % i == 0) n /= i;
- result -= result / i;
- }}
- if(n > 1) result -= result / n;
- return result;
-}
-
-// Sieb, falls alle Werte benötigt werden.
-// Laufzeit: O(N*log(log(N)))
-vector<ll> phi(n + 1);
-for (int i = 1; i <= n; i++) phi[i] = i;
-for (int i = 2; i <= n; i++) if (phi[i] == i) {
- for (int j = i; j <= n; j += i) {
- phi[j] /= i;
- phi[j] *= i - 1;
-}}
diff --git a/math/piLegendre.cpp b/math/piLegendre.cpp
deleted file mode 100644
index 21b974b..0000000
--- a/math/piLegendre.cpp
+++ /dev/null
@@ -1,23 +0,0 @@
-constexpr ll cache = 500; // requires O(cache^3)
-vector<vector<ll>> memo(cache * cache, vector<ll>(cache));
-
-ll pi(ll n);
-
-ll phi(ll n, ll k) {
- if (n <= 1 || k < 0) return 0;
- if (n <= primes[k]) return n - 1;
- if (n < N && primes[k] * primes[k] > n) return n - pi(n) + k;
- bool ok = n < cache * cache;
- if (ok && memo[n][k] > 0) return memo[n][k];
- ll res = n/primes[k] - phi(n/primes[k], k - 1) + phi(n, k - 1);
- if (ok) memo[n][k] = res;
- return res;
-}
-
-ll pi(ll n) {
- if (n < N) { // implement this as O(1) lookup for speedup!
- return distance(primes.begin(), upper_bound(all(primes), n));
- } else {
- ll k = pi(sqrtl(n) + 1);
- return n - phi(n, k) + k;
-}}
diff --git a/math/piLehmer.cpp b/math/piLehmer.cpp
deleted file mode 100644
index 56c172d..0000000
--- a/math/piLehmer.cpp
+++ /dev/null
@@ -1,52 +0,0 @@
-constexpr ll cacheA = 2 * 3 * 5 * 7 * 11 * 13 * 17;
-constexpr ll cacheB = 7;
-ll memoA[cacheA + 1][cacheB + 1];
-ll memoB[cacheB + 1];
-ll memoC[N];
-
-void init() {
- primeSieve(); // code from above
- for (ll i = 0; i < N; i++) {
- memoC[i] = memoC[i - 1];
- if (isPrime(i)) memoC[i]++;
- }
- memoB[0] = 1;
- for(ll i = 0; i <= cacheA; i++) memoA[i][0] = i;
- for(ll i = 1; i <= cacheB; i++) {
- memoB[i] = primes[i - 1] * memoB[i - 1];
- for(ll j = 1; j <= cacheA; j++) {
- memoA[j][i] = memoA[j][i - 1] - memoA[j /
- primes[i - 1]][i - 1];
-}}}
-
-ll phi(ll n, ll k) {
- if(k == 0) return n;
- if(k <= cacheB)
- return memoA[n % memoB[k]][k] +
- (n / memoB[k]) * memoA[memoB[k]][k];
- if(n <= primes[k - 1]*primes[k - 1]) return memoC[n] - k + 1;
- if(n <= primes[k - 1]*primes[k - 1]*primes[k - 1] && n < N) {
- ll b = memoC[(ll)sqrtl(n)];
- ll res = memoC[n] - (b + k - 2) * (b - k + 1) / 2;
- for(ll i = k; i < b; i++) res += memoC[n / primes[i]];
- return res;
- }
- return phi(n, k - 1) - phi(n / primes[k - 1], k - 1);
-}
-
-ll pi(ll n) {
- if (n < N) return memoC[n];
- ll a = pi(sqrtl(sqrtl(n)));
- ll b = pi(sqrtl(n));
- ll c = pi(cbrtl(n));
- ll res = phi(n, a) + (b + a - 2) * (b - a + 1) / 2;
- for (ll i = a; i < b; i++) {
- ll w = n / primes[i];
- res -= pi(w);
- if (i > c) continue;
- ll bi = pi(sqrtl(w));
- for (ll j = i; j < bi; j++) {
- res -= pi(w / primes[j]) - j;
- }}
- return res;
-}
diff --git a/math/polynomial.cpp b/math/polynomial.cpp
deleted file mode 100644
index 44f6207..0000000
--- a/math/polynomial.cpp
+++ /dev/null
@@ -1,65 +0,0 @@
-struct poly {
- vector<ll> data;
-
- poly(int deg = 0) : data(max(1, deg)) {}
- poly(initializer_list<ll> _data) : data(_data) {}
-
- int size() const {return sz(data);}
-
- void trim() {
- for (ll& x : data) x = (x % mod + mod) % mod;
- while (size() > 1 && data.back() == 0) data.pop_back();
- }
-
- ll& operator[](int x) {return data[x];}
- const ll& operator[](int x) const {return data[x];}
-
- ll operator()(int x) const {
- ll res = 0;
- for (int i = size() - 1; i >= 0; i--)
- res = (res * x + data[i]) % mod;
- return res % mod;
- }
-
- poly& operator+=(const poly& o) {
- if (size() < o.size()) data.resize(o.size());
- for (int i = 0; i < o.size(); i++)
- data[i] = (data[i] + o[i]) % mod;
- return *this;
- }
-
- poly operator*(const poly& o) const {
- poly res(size() + o.size() - 1);
- for (int i = 0; i < size(); i++) {
- for (int j = 0; j < o.size(); j++) {
- res[i + j] += (data[i] * o[j]) % mod;
- }}
- res.trim();
- return res;
- }
-
- //return p(x+a)
- poly operator<<(ll a) const {
- poly res(size());
- for (int i = size() - 1; i >= 0; i--) {
- for (int j = size() - i - 1; j >= 1; j--)
- res[j] = (res[j] * a + res[j - 1]) % mod;
- res[0] = (res[0] * a + res[i]) % mod;
- }
- return res;
- }
-
- pair<poly, poly> divmod(const poly& d) const {
- int i = size() - d.size();
- poly s(i + 1), r = *this;
- ll inv = multInv(d.data.back(), mod);
- for (; i >= 0; i--) {
- s[i] = (r.data.back() * inv) % mod;
- r.data.pop_back();
- for (int j = 0; i + j < r.size(); j++) {
- r[i + j] = (r.data[i + j] - s[i] * d[j]) % mod;
- }}
- s.trim(); r.trim();
- return {s, r};
- }
-};
diff --git a/math/primeSieve.cpp b/math/primeSieve.cpp
deleted file mode 100644
index 1b0f514..0000000
--- a/math/primeSieve.cpp
+++ /dev/null
@@ -1,16 +0,0 @@
-constexpr ll N = 100'000'000;
-bitset<N / 2> isNotPrime;
-vector<ll> primes = {2};
-
-bool isPrime(ll x) {
- if (x < 2 || x % 2 == 0) return x == 2;
- else return !isNotPrime[x / 2];
-}
-
-void primeSieve() {
- for (ll i = 3; i < N; i += 2) {// i * i < N reicht für isPrime
- if (!isNotPrime[i / 2]) {
- primes.push_back(i); // optional
- for (ll j = i * i; j < N; j+= 2 * i) {
- isNotPrime[j / 2] = 1;
-}}}}
diff --git a/math/primitiveRoot.cpp b/math/primitiveRoot.cpp
deleted file mode 100644
index 464bdb3..0000000
--- a/math/primitiveRoot.cpp
+++ /dev/null
@@ -1,23 +0,0 @@
-bool isPrimitive(ll g, ll n, ll phi, map<ll, int> phiFacs) {
- if (g == 1) return n == 2;
- for (auto [f, _] : phiFacs)
- if (powMod(g, phi / f, n) == 1) return false;
- return true;
-}
-
-bool isPrimitive(ll g, ll n) {
- ll phin = phi(n); //isPrime(n) => phi(n) = n - 1
- map<ll, int> phiFacs;
- factor(phin, phiFacs);
- return isPrimitive(g, n, phin, phiFacs);
-}
-
-ll findPrimitive(ll n) {
- ll phin = phi(n); //isPrime(n) => phi(n) = n - 1
- map<ll, int> phiFacs;
- factor(phin, phiFacs);
- //auch zufällige Reihenfolge möglich!
- for (ll res = 1; res < n; res++)
- if (isPrimitive(res, n, phin, phiFacs)) return res;
- return -1;
-}
diff --git a/math/rho.cpp b/math/rho.cpp
deleted file mode 100644
index 7885196..0000000
--- a/math/rho.cpp
+++ /dev/null
@@ -1,19 +0,0 @@
-using lll = __int128;
-ll rho(ll n) { // Findet Faktor < n, nicht unbedingt prim.
- if (n % 2 == 0) return 2;
- ll x = 0, y = 0, prd = 2, i = n/2 + 7;
- auto f = [&](lll x){return (x * x + i) % n;};
- for (ll t = 30, i = n/2 + 7; t % 40 || gcd(prd, n) == 1; t++) {
- if (x == y) x = ++i, y = f(x);
- if (ll q = (lll)prd * abs(x-y) % n; q) prd = q;
- x = f(x); y = f(f(y));
- }
- return gcd(prd, n);
-}
-
-void factor(ll n, map<ll, int>& facts) {
- if (n == 1) return;
- if (isPrime(n)) {facts[n]++; return;}
- ll f = rho(n);
- factor(n / f, facts); factor(f, facts);
-}
diff --git a/math/shortModInv.cpp b/math/shortModInv.cpp
deleted file mode 100644
index 244bacf..0000000
--- a/math/shortModInv.cpp
+++ /dev/null
@@ -1,3 +0,0 @@
-ll multInv(ll x, ll m) { // x^{-1} mod m
- return 1 < x ? m - inv(m % x, x) * m / x : 1;
-}
diff --git a/math/simpson.cpp b/math/simpson.cpp
deleted file mode 100644
index a99b911..0000000
--- a/math/simpson.cpp
+++ /dev/null
@@ -1,12 +0,0 @@
-double f(double x) {return x;}
-
-double simps(double a, double b) {
- return (f(a) + 4.0 * f((a + b) / 2.0) + f(b)) * (b - a) / 6.0;
-}
-
-double integrate(double a, double b) {
- double m = (a + b) / 2.0;
- double l = simps(a, m), r = simps(m, b), tot = simps(a, b);
- if (abs(l + r - tot) < EPS) return tot;
- return integrate(a, m) + integrate(m, b);
-}
diff --git a/math/sqrtModCipolla.cpp b/math/sqrtModCipolla.cpp
deleted file mode 100644
index 12bc590..0000000
--- a/math/sqrtModCipolla.cpp
+++ /dev/null
@@ -1,13 +0,0 @@
-bool isSquare(ll x, ll p){
- return powMod(x, p/2, p) != p-1;
-}
-
-// Teste vorher, ob sqrt(n) mod p existiert!
-ll sqrtMod(ll n, ll p){
- if(n == 0) return 0;
- ll r0 = 1, r1 = 0, b0 = 1, b1 = 1, w;
- while(isSquare(w=(b0*b0-n+p)%p, p)) b0 = rng()%p;
- for(ll e = (p+1)/2; e; e /= 2, tie(b0, b1) = pair((b0*b0 + b1*b1%p*w)%p, 2*b0*b1%p))
- if(e & 1) tie(r0, r1) = pair((r0*b0 + r1*b1%p*w)%p, (r0*b1 + b0*r1)%p);
- return r0;
-}
diff --git a/math/squfof.cpp b/math/squfof.cpp
deleted file mode 100644
index 1cb97de..0000000
--- a/math/squfof.cpp
+++ /dev/null
@@ -1,89 +0,0 @@
-using lll = __int128;
-
-constexpr lll multipliers[] = {1, 3, 5, 7,
- 11, 3*5, 3*7, 3*11,
- 5*7, 5*11, 7*11,
- 3*5*7, 3*5*11, 3*7*11,
- 5*7*11, 3*5*7*11};
-
-lll root(lll x) {
- lll r = sqrtl(x);
- while(r*r < x) r++;
- while(r*r > x) r--;
- return r;
-}
-
-lll croot(lll x) {
- lll r = cbrtl(x);
- while(r*r*r < x) r++;
- while(r*r*r > x) r--;
- return r;
-}
-
-lll squfof(lll N) {
- lll s = croot(N);
- if (s*s*s == N) return s;
- s = root(N);
- if (s*s == N) return s;
- for (lll k : multipliers) {
- lll D = k * N;
- lll Po, P, Pprev, q, b, r, i;
- Po = Pprev = P = root(D);
- lll Qprev = 1;
- lll Q = D - Po*Po;
- lll L = 2 * root(2 * s);
- lll B = 3 * L;
- for (i = 2; i < B; i++) {
- b = (Po + P) / Q;
- P = b*Q - P;
- q = Q;
- Q = Qprev + b * (Pprev - P);
- r = root(Q);
- if (!(i & 1) && r*r == Q) break;
- Qprev = q;
- Pprev = P;
- }
- if (i >= B) continue;
- b = (Po - P) / r;
- Pprev = P = b*r + P;
- Qprev = r;
- Q = (D-Pprev*Pprev)/Qprev;
- i = 0;
- do {
- b = (Po + P) / Q;
- Pprev = P;
- P = b*Q - P;
- q = Q;
- Q = Qprev + b * (Pprev - P);
- Qprev = q;
- i++;
- } while(P != Pprev);
- r = gcd(N, Qprev);
- if (r != 1 && r != N) return r;
- }
- exit(1);//try fallback to pollard rho
-}
-
-constexpr lll trialLim = 5'000;
-
-void factor(lll n, map<lll, int>& facts) {
- for (lll i = 2; i * i <= n && i <= trialLim; i++) {
- while (n % i == 0) {
- facts[i]++;
- n /= i;
- }}
- if (n > 1 && n < trialLim * trialLim) {
- facts[n]++;
- } else {
- vector<lll> todo = {n};
- while (!todo.empty()) {
- lll c = todo.back();
- todo.pop_back();
- if (c == 1) continue;
- if (isPrime(c)) {
- facts[c]++;
- } else {
- lll d = squfof(c);
- todo.push_back(d);
- todo.push_back(c / d);
-}}}}
diff --git a/math/tables.tex b/math/tables.tex
deleted file mode 100644
index 53f3758..0000000
--- a/math/tables.tex
+++ /dev/null
@@ -1,18 +0,0 @@
-\enlargethispage{0.2cm}
-\begin{multicols*}{2}
- \input{math/tables/binom}
- \vfill
- \input{math/tables/composite}
- \vfill
- \input{math/tables/platonic}
- \vfill
- \input{math/tables/series}
-
- \columnbreak
-
- \input{math/tables/probability}
- \vfill
- \input{math/tables/stuff}
- \vfill
- \input{math/tables/nim}
-\end{multicols*}
diff --git a/math/tables/binom.tex b/math/tables/binom.tex
deleted file mode 100644
index 878a6b0..0000000
--- a/math/tables/binom.tex
+++ /dev/null
@@ -1,28 +0,0 @@
-\begin{tabularx}{\linewidth}{|XXXX|}
- \hline
- \multicolumn{4}{|c|}{Binomialkoeffizienten} \\
- \hline
- \multicolumn{4}{|c|}{
- $\frac{n!}{k!(n - k)!} \hfill=\hfill
- \binom{n}{k} \hfill=\hfill
- \binom{n}{n - k} \hfill=\hfill
- \frac{n}{k}\binom{n - 1}{k - 1} \hfill=\hfill
- \frac{n-k+1}{k}\binom{n}{k - 1} \hfill=\hfill
- \binom{n - 1}{k} + \binom{n - 1}{k - 1} \hfill=\hfill
- (-1)^k \binom{k - n - 1}{k} \hfill\approx\hfill
- 2^{n} \cdot \frac{2}{\sqrt{2\pi n}}\cdot\exp\left(-\frac{2(x - \frac{n}{2})^2}{n}\right)$
- } \\
- \grayhline
-
- $\sum\limits_{k = 0}^n \binom{n}{k} = 2^n$ &
- $\sum\limits_{k = 0}^n \binom{k}{m} = \binom{n + 1}{m + 1}$ &
- $\sum\limits_{i = 0}^n \binom{n}{i}^2 = \binom{2n}{n}$ &
- $\sum\limits_{k = 0}^n\binom{r + k}{k} = \binom{r + n + 1}{n}$\\
-
- $\binom{n}{m}\binom{m}{k} = \binom{n}{k}\binom{n - k}{m - k}$ &
- $\sum\limits_{k = 0}^n \binom{r}{k}\binom{s}{n - k} = \binom{r + s}{n}$ &
- \multicolumn{2}{l|}{
- $\sum\limits_{i = 1}^n \binom{n}{i} F_i = F_{2n} \quad F_n = n\text{-th Fib.}$
- }\\
- \hline
-\end{tabularx}
diff --git a/math/tables/composite.tex b/math/tables/composite.tex
deleted file mode 100644
index 8e14b2e..0000000
--- a/math/tables/composite.tex
+++ /dev/null
@@ -1,27 +0,0 @@
-
-\begin{tabularx}{\linewidth}{|r||r|r||r|r|r||C|}
- \hline
- \multicolumn{7}{|c|}{Important Numbers} \\
- \hline
- $10^x$ & Highly Composite & \# Divs & $<$ Prime & $>$ Prime & \# Primes & \\
- \hline
- 1 & 6 & 4 & $-3$ & $+1$ & 4 & \\
- 2 & 60 & 12 & $-3$ & $+1$ & 25 & \\
- 3 & 840 & 32 & $-3$ & $+9$ & 168 & \\
- 4 & 7\,560 & 64 & $-27$ & $+7$ & 1\,229 & \\
- 5 & 83\,160 & 128 & $-9$ & $+3$ & 9\,592 & \\
- 6 & 720\,720 & 240 & $-17$ & $+3$ & 78\,498 & \\
- 7 & 8\,648\,640 & 448 & $-9$ & $+19$ & 664\,579 & \\
- 8 & 73\,513\,440 & 768 & $-11$ & $+7$ & 5\,761\,455 & \\
- 9 & 735\,134\,400 & 1\,344 & $-63$ & $+7$ & 50\,847\,534 & \\
- 10 & 6\,983\,776\,800 & 2\,304 & $-33$ & $+19$ & 455\,052\,511 & \\
- 11 & 97\,772\,875\,200 & 4\,032 & $-23$ & $+3$ & 4\,118\,054\,813 & \\
- 12 & 963\,761\,198\,400 & 6\,720 & $-11$ & $+39$ & 37\,607\,912\,018 & \\
- 13 & 9\,316\,358\,251\,200 & 10\,752 & $-29$ & $+37$ & 346\,065\,536\,839 & \\
- 14 & 97\,821\,761\,637\,600 & 17\,280 & $-27$ & $+31$ & 3\,204\,941\,750\,802 & \\
- 15 & 866\,421\,317\,361\,600 & 26\,880 & $-11$ & $+37$ & 29\,844\,570\,422\,669 & \\
- 16 & 8\,086\,598\,962\,041\,600 & 41\,472 & $-63$ & $+61$ & 279\,238\,341\,033\,925 & \\
- 17 & 74\,801\,040\,398\,884\,800 & 64\,512 & $-3$ & $+3$ & 2\,623\,557\,157\,654\,233 & \\
- 18 & 897\,612\,484\,786\,617\,600 & 103\,680 & $-11$ & $+3$ & 24\,739\,954\,287\,740\,860 & \\
- \hline
-\end{tabularx}
diff --git a/math/tables/nim.tex b/math/tables/nim.tex
deleted file mode 100644
index 8490d42..0000000
--- a/math/tables/nim.tex
+++ /dev/null
@@ -1,96 +0,0 @@
-\begin{tabularx}{\linewidth}{|p{0.37\linewidth}|X|}
- \hline
- \multicolumn{2}{|c|}{Nim-Spiele (\ding{182} letzter gewinnt (normal), \ding{183} letzter verliert)} \\
- \hline
- Beschreibung &
- Strategie \\
- \hline
-
- $M = [\mathit{pile}_i]$\newline
- $[x] := \{1, \ldots, x\}$&
- $\mathit{SG} = \oplus_{i = 1}^n \mathit{pile}_i$\newline
- \ding{182} Nimm von einem Stapel, sodass $\mathit{SG}$ $0$ wird.\newline
- \ding{183} Genauso.
- Außer: Bleiben nur noch Stapel der Größe $1$, erzeuge ungerade Anzahl solcher Stapel.\\
- \hline
-
- $M = \{a^m \mid m \geq 0\}$ &
- $a$ ungerade: $\mathit{SG}_n = n \% 2$\newline
- $a$ gerade:\newline
- $\mathit{SG}_n = 2$, falls $n \equiv a \bmod (a + 1) $\newline
- $\mathit{SG}_n = n \% (a + 1) \% 2$, sonst.\\
- \hline
-
- $M_{\text{\ding{172}}} = \left[\frac{\mathit{pile}_i}{2}\right]$\newline
- $M_{\text{\ding{173}}} =
- \left\{\left\lceil\frac{\mathit{pile}_i}{2}\right\rceil,~
- \mathit{pile}_i\right\}$ &
- \ding{172}
- $\mathit{SG}_{2n} = n$,
- $\mathit{SG}_{2n+1} = \mathit{SG}_n$\newline
- \ding{173}
- $\mathit{SG}_0 = 0$,
- $\mathit{SG}_n = [\log_2 n] + 1$ \\
- \hline
-
- $M_{\text{\ding{172}}} = \text{Teiler von $\mathit{pile}_i$}$\newline
- $M_{\text{\ding{173}}} = \text{echte Teiler von $\mathit{pile}_i$}$ &
- \ding{172}
- $\mathit{SG}_0 = 0$,
- $\mathit{SG}_n = \mathit{SG}_{\text{\ding{173},n}} + 1$\newline
- \ding{173}
- $\mathit{ST}_1 = 0$,
- $\mathit{SG}_n = \text{\#Nullen am Ende von $n_{bin}$}$\\
- \hline
-
- $M_{\text{\ding{172}}} = [k]$\newline
- $M_{\text{\ding{173}}} = S$, ($S$ endlich)\newline
- $M_{\text{\ding{174}}} = S \cup \{\mathit{pile}_i\}$ &
- $\mathit{SG}_{\text{\ding{172}}, n} = n \bmod (k + 1)$\newline
- \ding{182} Niederlage bei $\mathit{SG} = 0$\newline
- \ding{183} Niederlage bei $\mathit{SG} = 1$\newline
- $\mathit{SG}_{\text{\ding{174}}, n} = \mathit{SG}_{\text{\ding{173}}, n} + 1$\\
- \hline
-
- \multicolumn{2}{|l|}{
- Für jedes endliche $M$ ist $\mathit{SG}$ eines Stapels irgendwann periodisch.
- } \\
- \hline
-
- \textsc{Moore}'s Nim:\newline
- Beliebige Zahl von maximal $k$ Stapeln. &
- \ding{182}
- Schreibe $\mathit{pile}_i$ binär.
- Addiere ohne Übertrag zur Basis $k + 1$.
- Niederlage, falls Ergebnis gleich 0.\newline
- \ding{183}
- Wenn alle Stapel $1$ sind:
- Niederlage, wenn $n \equiv 1 \bmod (k + 1)$.
- Sonst wie in \ding{182}.\\
- \hline
-
- Staircase Nim:\newline
- $n$ Stapel in einer Reihe.
- Beliebige Zahl von Stapel $i$ nach Stapel $i-1$. &
- Niederlage, wenn Nim der ungeraden Spiele verloren ist:\newline
- $\oplus_{i = 0}^{(n - 1) / 2} \mathit{pile}_{2i + 1} = 0$\\
- \hline
-
- \textsc{Lasker}'s Nim:\newline
- Zwei mögliche Züge:\newline
- 1) Nehme beliebige Zahl.\newline
- 2) Teile Stapel in zwei Stapel (ohne Entnahme).&
- $\mathit{SG}_n = n$, falls $n \equiv 1,2 \bmod 4$\newline
- $\mathit{SG}_n = n + 1$, falls $n \equiv 3 \bmod 4$\newline
- $\mathit{SG}_n = n - 1$, falls $n \equiv 0 \bmod 4$\\
- \hline
-
- \textsc{Kayles}' Nim:\newline
- Zwei mögliche Züge:\newline
- 1) Nehme beliebige Zahl.\newline
- 2) Teile Stapel in zwei Stapel (mit Entnahme).&
- Berechne $\mathit{SG}_n$ für kleine $n$ rekursiv.\newline
- $n \in [72,83]: \quad 4, 1, 2, 8, 1, 4, 7, 2, 1, 8, 2, 7$\newline
- Periode ab $n = 72$ der Länge $12$.\\
- \hline
-\end{tabularx}
diff --git a/math/tables/numbers.tex b/math/tables/numbers.tex
deleted file mode 100644
index 1dc9f38..0000000
--- a/math/tables/numbers.tex
+++ /dev/null
@@ -1,59 +0,0 @@
-\begin{expandtable}
-\begin{tabularx}{\linewidth}{|l|X|}
- \hline
- \multicolumn{2}{|c|}{Berühmte Zahlen} \\
- \hline
- \textsc{Fibonacci} &
- $f(0) = 0 \quad
- f(1) = 1 \quad
- f(n+2) = f(n+1) + f(n)$ \\
- \grayhline
-
- \textsc{Catalan} &
- $C_0 = 1 \qquad
- C_n = \sum\limits_{k = 0}^{n - 1} C_kC_{n - 1 - k} =
- \frac{1}{n + 1}\binom{2n}{n} = \frac{2(2n - 1)}{n+1} \cdot C_{n-1}$ \\
- \grayhline
-
- \textsc{Euler} I &
- $\eulerI{n}{0} = \eulerI{n}{n-1} = 1 \qquad
- \eulerI{n}{k} = (k+1) \eulerI{n-1}{k} + (n-k) \eulerI{n-1}{k-1} $ \\
- \grayhline
-
- \textsc{Euler} II &
- $\eulerII{n}{0} = 1 \quad
- \eulerII{n}{n} = 0 \quad$\\
- & $\eulerII{n}{k} = (k+1) \eulerII{n-1}{k} + (2n-k-1) \eulerII{n-1}{k-1}$ \\
- \grayhline
-
- \textsc{Stirling} I &
- $\stirlingI{0}{0} = 1 \qquad
- \stirlingI{n}{0} = \stirlingI{0}{n} = 0 \qquad
- \stirlingI{n}{k} = \stirlingI{n-1}{k-1} + (n-1) \stirlingI{n-1}{k}$ \\
- \grayhline
-
- \textsc{Stirling} II &
- $\stirlingII{n}{1} = \stirlingII{n}{n} = 1 \qquad
- \stirlingII{n}{k} = k \stirlingII{n-1}{k} + \stirlingII{n-1}{k-1} =
- \frac{1}{k!} \sum\limits_{j=0}^{k} (-1)^{k-j}\binom{k}{j}j^n$\\
- \grayhline
-
- \textsc{Bell} &
- $B_1 = 1 \qquad
- B_n = \sum\limits_{k = 0}^{n - 1} B_k\binom{n-1}{k}
- = \sum\limits_{k = 0}^{n}\stirlingII{n}{k}$\\
- \grayhline
-
- \textsc{Partitions} &
- $p(0,0) = 1 \quad
- p(n,k) = 0 \text{ für } k > n \text{ oder } n \leq 0 \text{ oder } k \leq 0$ \\
- & $p(n,k) = p(n-k,k) + p(n-1,k-1)$\\
- \grayhline
-
- \textsc{Partitions} &
- $f(0) = 1 \quad f(n) = 0~(n < 0)$ \\
- & $f(n)=\sum\limits_{k=1}^\infty(-1)^{k-1}f(n - \frac{k(3k+1)}{2})+\sum\limits_{k=1}^\infty(-1)^{k-1}f(n - \frac{k(3k-1)}{2})$\\
-
- \hline
-\end{tabularx}
-\end{expandtable}
diff --git a/math/tables/platonic.tex b/math/tables/platonic.tex
deleted file mode 100644
index f4ee554..0000000
--- a/math/tables/platonic.tex
+++ /dev/null
@@ -1,39 +0,0 @@
-\begin{tabularx}{\linewidth}{|X|CCCX|}
- \hline
- \multicolumn{5}{|c|}{Platonische Körper} \\
- \hline
- Übersicht & Seiten & Ecken & Kanten & dual zu \\
- \hline
- Tetraeder & 4 & 4 & 6 & Tetraeder \\
- Würfel/Hexaeder & 6 & 8 & 12 & Oktaeder \\
- Oktaeder & 8 & 6 & 12 & Würfel/Hexaeder\\
- Dodekaeder & 12 & 20 & 30 & Ikosaeder \\
- Ikosaeder & 20 & 12 & 30 & Dodekaeder \\
- \hline
- \multicolumn{5}{|c|}{Färbungen mit maximal $n$ Farben (bis auf Isomorphie)} \\
- \hline
- \multicolumn{3}{|l}{Ecken vom Oktaeder/Seiten vom Würfel} &
- \multicolumn{2}{l|}{$(n^6 + 3n^4 + 12n^3 + 8n^2)/24$} \\
-
- \multicolumn{3}{|l}{Ecken vom Würfel/Seiten vom Oktaeder} &
- \multicolumn{2}{l|}{$(n^8 + 17n^4 + 6n^2)/24$} \\
-
- \multicolumn{3}{|l}{Kanten vom Würfel/Oktaeder} &
- \multicolumn{2}{l|}{$(n^{12} + 6n^7 + 3n^6 + 8n^4 + 6n^3)/24$} \\
-
- \multicolumn{3}{|l}{Ecken/Seiten vom Tetraeder} &
- \multicolumn{2}{l|}{$(n^4 + 11n^2)/12$} \\
-
- \multicolumn{3}{|l}{Kanten vom Tetraeder} &
- \multicolumn{2}{l|}{$(n^6 + 3n^4 + 8n^2)/12$} \\
-
- \multicolumn{3}{|l}{Ecken vom Ikosaeder/Seiten vom Dodekaeder} &
- \multicolumn{2}{l|}{$(n^{12} + 15n^6 + 44n^4)/60$} \\
-
- \multicolumn{3}{|l}{Ecken vom Dodekaeder/Seiten vom Ikosaeder} &
- \multicolumn{2}{l|}{$(n^{20} + 15n^{10} + 20n^8 + 24n^4)/60$} \\
-
- \multicolumn{3}{|l}{Kanten vom Dodekaeder/Ikosaeder (evtl. falsch)} &
- \multicolumn{2}{l|}{$(n^{30} + 15n^{16} + 20n^{10} + 24n^6)/60$} \\
- \hline
-\end{tabularx}
diff --git a/math/tables/probability.tex b/math/tables/probability.tex
deleted file mode 100644
index f265d10..0000000
--- a/math/tables/probability.tex
+++ /dev/null
@@ -1,27 +0,0 @@
-\begin{tabularx}{\linewidth}{|LICIR|}
- \hline
- \multicolumn{3}{|c|}{
- Wahrscheinlichkeitstheorie ($A,B$ Ereignisse und $X,Y$ Variablen)
- } \\
- \hline
- $\E(X + Y) = \E(X) + \E(Y)$ &
- $\E(\alpha X) = \alpha \E(X)$ &
- $X, Y$ unabh. $\Leftrightarrow \E(XY) = \E(X) \cdot \E(Y)$\\
-
- $\Pr[A \vert B] = \frac{\Pr[A \land B]}{\Pr[B]}$ &
- $A, B$ disj. $\Leftrightarrow \Pr[A \land B] = \Pr[A] \cdot \Pr[B]$ &
- $\Pr[A \lor B] = \Pr[A] + \Pr[B] - \Pr[A \land B]$ \\
- \hline
-\end{tabularx}
-\vfill
-\begin{tabularx}{\linewidth}{|Xlr|lrX|}
- \hline
- \multicolumn{6}{|c|}{\textsc{Bertrand}'s Ballot Theorem (Kandidaten $A$ und $B$, $k \in \mathbb{N}$)} \\
- \hline
- & $\#A > k\#B$ & $Pr = \frac{a - kb}{a + b}$ &
- $\#B - \#A \leq k$ & $Pr = 1 - \frac{a!b!}{(a + k + 1)!(b - k - 1)!}$ & \\
-
- & $\#A \geq k\#B$ & $Pr = \frac{a + 1 - kb}{a + 1}$ &
- $\#A \geq \#B + k$ & $Num = \frac{a - k + 1 - b}{a - k + 1} \binom{a + b - k}{b}$ & \\
- \hline
-\end{tabularx}
diff --git a/math/tables/series.tex b/math/tables/series.tex
deleted file mode 100644
index 3042781..0000000
--- a/math/tables/series.tex
+++ /dev/null
@@ -1,33 +0,0 @@
-\begin{tabularx}{\linewidth}{|XIXIXIX|}
- \hline
- \multicolumn{4}{|c|}{Reihen} \\
- \hline
- $\sum\limits_{i = 1}^n i = \frac{n(n+1)}{2}$ &
- $\sum\limits_{i = 1}^n i^2 = \frac{n(n + 1)(2n + 1)}{6}$ &
- $\sum\limits_{i = 1}^n i^3 = \frac{n^2 (n + 1)^2}{4}$ &
- $H_n = \sum\limits_{i = 1}^n \frac{1}{i}$ \\
- \grayhline
-
- $\sum\limits_{i = 0}^n c^i = \frac{c^{n + 1} - 1}{c - 1} \quad c \neq 1$ &
- $\sum\limits_{i = 0}^\infty c^i = \frac{1}{1 - c} \quad \vert c \vert < 1$ &
- $\sum\limits_{i = 1}^\infty c^i = \frac{c}{1 - c} \quad \vert c \vert < 1$ &
- $\sum\limits_{i = 0}^\infty ic^i = \frac{c}{(1 - c)^2} \quad \vert c \vert < 1$ \\
- \grayhline
-
- \multicolumn{2}{|lI}{
- $\sum\limits_{i = 0}^n ic^i = \frac{nc^{n + 2} - (n + 1)c^{n + 1} + c}{(c - 1)^2} \quad c \neq 1$
- } &
- \multicolumn{2}{l|}{
- $\sum\limits_{i = 1}^n iH_i = \frac{n(n + 1)}{2}H_n - \frac{n(n - 1)}{4}$
- } \\
- \grayhline
-
- \multicolumn{2}{|lI}{
- $\sum\limits_{i = 1}^n H_i = (n + 1)H_n - n$
- } &
- \multicolumn{2}{l|}{
- $\sum\limits_{i = 1}^n \binom{i}{m}H_i =
- \binom{n + 1}{m + 1} \left(H_{n + 1} - \frac{1}{m + 1}\right)$
- } \\
- \hline
-\end{tabularx}
diff --git a/math/tables/stuff.tex b/math/tables/stuff.tex
deleted file mode 100644
index 5b5093e..0000000
--- a/math/tables/stuff.tex
+++ /dev/null
@@ -1,32 +0,0 @@
-\begin{tabularx}{\linewidth}{|ll|}
- \hline
- \multicolumn{2}{|C|}{Verschiedenes} \\
- \hline
- Türme von Hanoi, minimale Schirttzahl: &
- $T_n = 2^n - 1$ \\
-
- \#Regionen zwischen $n$ Geraden &
- $\frac{n\left(n + 1\right)}{2} + 1$ \\
-
- \#abgeschlossene Regionen zwischen $n$ Geraden &
- $\frac{n^2 - 3n + 2}{2}$ \\
-
- \#markierte, gewurzelte Bäume &
- $n^{n-1}$ \\
-
- \#markierte, nicht gewurzelte Bäume &
- $n^{n-2}$ \\
-
- \#Wälder mit $k$ gewurzelten Bäumen &
- $\frac{k}{n}\binom{n}{k}n^{n-k}$ \\
-
- \#Wälder mit $k$ gewurzelten Bäumen mit vorgegebenen Wurzelknoten&
- $\frac{k}{n}n^{n-k}$ \\
-
- Dearangements &
- $!n = (n - 1)(!(n - 1) + !(n - 2)) = \left\lfloor\frac{n!}{e} + \frac{1}{2}\right\rfloor$ \\
- &
- $\lim\limits_{n \to \infty} \frac{!n}{n!} = \frac{1}{e}$ \\
- \hline
-\end{tabularx}
-
diff --git a/math/tables/twelvefold.tex b/math/tables/twelvefold.tex
deleted file mode 100644
index 18d3955..0000000
--- a/math/tables/twelvefold.tex
+++ /dev/null
@@ -1,32 +0,0 @@
-\begin{expandtable}
-\begin{tabularx}{\linewidth}{|C|CICICIC|}
- \hline
- Bälle & identisch & verschieden & identisch & verschieden \\
- Boxen & identisch & identisch & verschieden & verschieden \\
- \hline
- -- &
- $p_k(n + k)$ &
- $\sum\limits_{i = 0}^k \stirlingII{n}{i}$ &
- $\binom{n + k - 1}{k - 1}$ &
- $k^n$ \\
- \grayhline
-
- \makecell{Bälle pro\\Box $\geq 1$} &
- $p_k(n)$ &
- $\stirlingII{n}{k}$ &
- $\binom{n - 1}{k - 1}$ &
- $k! \stirlingII{n}{k}$ \\
- \grayhline
-
- \makecell{Bälle pro\\Box $\leq 1$} &
- $[n \leq k]$ &
- $[n \leq k]$ &
- $\binom{k}{n}$ &
- $n! \binom{k}{n}$ \\
- \hline
- \multicolumn{5}{|l|}{
- $[\text{Bedingung}]$: \code{return Bedingung ? 1 : 0;}
- } \\
- \hline
-\end{tabularx}
-\end{expandtable}
diff --git a/math/transforms/andTransform.cpp b/math/transforms/andTransform.cpp
deleted file mode 100644
index 1fd9f5c..0000000
--- a/math/transforms/andTransform.cpp
+++ /dev/null
@@ -1,8 +0,0 @@
-void fft(vector<ll>& a, bool inv = false) {
- int n = sz(a);
- for (int s = 1; s < n; s *= 2) {
- for (int i = 0; i < n; i += 2 * s) {
- for (int j = i; j < i + s; j++) {
- ll& u = a[j], &v = a[j + s];
- tie(u, v) = inv ? pair(v - u, u) : pair(v, u + v);
-}}}}
diff --git a/math/transforms/bitwiseTransforms.cpp b/math/transforms/bitwiseTransforms.cpp
deleted file mode 100644
index 28561da..0000000
--- a/math/transforms/bitwiseTransforms.cpp
+++ /dev/null
@@ -1,12 +0,0 @@
-void bitwiseConv(vector<ll>& a, bool inv = false) {
- int n = sz(a);
- for (int s = 1; s < n; s *= 2) {
- for (int i = 0; i < n; i += 2 * s) {
- for (int j = i; j < i + s; j++) {
- ll& u = a[j], &v = a[j + s];
- tie(u, v) = inv ? pair(v - u, u) : pair(v, u + v); // AND
- //tie(u, v) = inv ? pair(v, u - v) : pair(u + v, u); //OR
- //tie(u, v) = pair(u + v, u - v); // XOR
- }}}
- //if (inv) for (ll& x : a) x /= n; // XOR (careful with MOD)
-}
diff --git a/math/transforms/fft.cpp b/math/transforms/fft.cpp
deleted file mode 100644
index 2bd95b2..0000000
--- a/math/transforms/fft.cpp
+++ /dev/null
@@ -1,23 +0,0 @@
-using cplx = complex<double>;
-
-void fft(vector<cplx>& a, bool inv = false) {
- int n = sz(a);
- for (int i = 0, j = 1; j < n - 1; ++j) {
- for (int k = n >> 1; k > (i ^= k); k >>= 1);
- if (j < i) swap(a[i], a[j]);
- }
- static vector<cplx> ws(2, 1);
- for (static int k = 2; k < n; k *= 2) {
- ws.resize(n);
- cplx w = polar(1.0, acos(-1.0) / k);
- for (int i=k; i<2*k; i++) ws[i] = ws[i/2] * (i % 2 ? w : 1);
- }
- for (int s = 1; s < n; s *= 2) {
- for (int j = 0; j < n; j += 2 * s) {
- for (int k = 0; k < s; k++) {
- cplx u = a[j + k], t = a[j + s + k];
- t *= (inv ? conj(ws[s + k]) : ws[s + k]);
- a[j + k] = u + t;
- a[j + s + k] = u - t;
- if (inv) a[j + k] /= 2, a[j + s + k] /= 2;
-}}}}
diff --git a/math/transforms/fftMul.cpp b/math/transforms/fftMul.cpp
deleted file mode 100644
index eac343c..0000000
--- a/math/transforms/fftMul.cpp
+++ /dev/null
@@ -1,14 +0,0 @@
-vector<cplx> mul(vector<cplx>& a, vector<cplx>& b) {
- vector<cplx> c(sz(a)), d(sz(a));
- for (int i = 0; i < sz(b); i++) {
- c[i] = {real(a[i]), real(b[i])};
- }
- fft(c);
- for (int i = 0; i < sz(b); i++) {
- int j = (sz(a) - i) % sz(a);
- cplx x = (c[i] + conj(c[j])) / cplx{2, 0}; //fft(a)[i];
- cplx y = (c[i] - conj(c[j])) / cplx{0, 2}; //fft(b)[i];
- d[i] = x * y;
- }
- return fft(d, true);
-}
diff --git a/math/transforms/multiplyBitwise.cpp b/math/transforms/multiplyBitwise.cpp
deleted file mode 100644
index 0fa671c..0000000
--- a/math/transforms/multiplyBitwise.cpp
+++ /dev/null
@@ -1,8 +0,0 @@
-vector<ll> mul(vector<ll> a, vector<ll> b) {
- int n = 1 << (__lg(max(sz(a), sz(b)) - 1) + 1);
- a.resize(n), b.resize(n);
- bitwiseConv(a), bitwiseConv(b);
- for (int i=0; i<n; i++) a[i] *= b[i]; // MOD?
- bitwiseConv(a, true);
- return a;
-}
diff --git a/math/transforms/multiplyFFT.cpp b/math/transforms/multiplyFFT.cpp
deleted file mode 100644
index 0022d1f..0000000
--- a/math/transforms/multiplyFFT.cpp
+++ /dev/null
@@ -1,12 +0,0 @@
-vector<ll> mul(vector<ll>& a, vector<ll>& b) {
- int n = 1 << (__lg(sz(a) + sz(b) - 1) + 1);
- vector<cplx> a2(all(a)), b2(all(b));
- a2.resize(n), b2.resize(n);
- fft(a2), fft(b2);
- for (int i=0; i<n; i++) a2[i] *= b2[i];
- fft(a2, true);
-
- vector<ll> ans(n);
- for (int i=0; i<n; i++) ans[i] = llround(a2[i].real());
- return ans;
-}
diff --git a/math/transforms/multiplyNTT.cpp b/math/transforms/multiplyNTT.cpp
deleted file mode 100644
index 806d124..0000000
--- a/math/transforms/multiplyNTT.cpp
+++ /dev/null
@@ -1,8 +0,0 @@
-vector<ll> mul(vector<ll> a, vector<ll> b) {
- int n = 1 << (__lg(sz(a) + sz(b) - 1) + 1);
- a.resize(n), b.resize(n);
- ntt(a), ntt(b);
- for (int i=0; i<n; i++) a[i] = a[i] * b[i] % mod;
- ntt(a, true);
- return a;
-}
diff --git a/math/transforms/ntt.cpp b/math/transforms/ntt.cpp
deleted file mode 100644
index ca605d3..0000000
--- a/math/transforms/ntt.cpp
+++ /dev/null
@@ -1,23 +0,0 @@
-constexpr ll mod = 998244353, root = 3;
-
-void ntt(vector<ll>& a, bool inv = false) {
- int n = sz(a);
- auto b = a;
- ll r = inv ? powMod(root, mod - 2, mod) : root;
-
- for (int s = n / 2; s > 0; s /= 2) {
- ll ws = powMod(r, (mod - 1) / (n / s), mod), w = 1;
- for (int j = 0; j < n / 2; j += s) {
- for (int k = j; k < j + s; k++) {
- ll u = a[j + k], t = a[j + s + k] * w % mod;
- b[k] = (u + t) % mod;
- b[n/2 + k] = (u - t + mod) % mod;
- }
- w = w * ws % mod;
- }
- swap(a, b);
- }
- if (inv) {
- ll div = powMod(n, mod - 2, mod);
- for (auto& x : a) x = x * div % mod;
-}}
diff --git a/math/transforms/orTransform.cpp b/math/transforms/orTransform.cpp
deleted file mode 100644
index eb1da44..0000000
--- a/math/transforms/orTransform.cpp
+++ /dev/null
@@ -1,8 +0,0 @@
-void fft(vector<ll>& a, bool inv = false) {
- int n = sz(a);
- for (int s = 1; s < n; s *= 2) {
- for (int i = 0; i < n; i += 2 * s) {
- for (int j = i; j < i + s; j++) {
- ll& u = a[j], &v = a[j + s];
- tie(u, v) = inv ? pair(v, u - v) : pair(u + v, u);
-}}}}
diff --git a/math/transforms/seriesOperations.cpp b/math/transforms/seriesOperations.cpp
deleted file mode 100644
index 4743674..0000000
--- a/math/transforms/seriesOperations.cpp
+++ /dev/null
@@ -1,56 +0,0 @@
-vector<ll> poly_inv(const vector<ll>& a, int n) {
- vector<ll> q = {powMod(a[0], mod-2, mod)};
- for (int len = 1; len < n; len *= 2){
- vector<ll> a2 = a, q2 = q;
- a2.resize(2*len), q2.resize(2*len);
- ntt(q2);
- for (int j : {0, 1}) {
- ntt(a2);
- for (int i = 0; i < 2*len; i++) a2[i] = a2[i]*q2[i] % mod;
- ntt(a2, true);
- for (int i = 0; i < len; i++) a2[i] = 0;
- }
- for (int i = len; i < min(n, 2*len); i++) {
- q.push_back((mod - a2[i]) % mod);
- }}
- return q;
-}
-
-vector<ll> poly_deriv(vector<ll> a) {
- for (int i = 1; i < sz(a); i++)
- a[i-1] = a[i] * i % mod;
- a.pop_back();
- return a;
-}
-
-vector<ll> poly_integr(vector<ll> a) {
- if (a.empty()) return {0};
- a.push_back(a.back() * powMod(sz(a), mod-2, mod) % mod);
- for (int i = sz(a)-2; i > 0; i--)
- a[i] = a[i-1] * powMod(i, mod-2, mod) % mod;
- a[0] = 0;
- return a;
-}
-
-vector<ll> poly_log(vector<ll> a, int n) {
- a = mul(poly_deriv(a), poly_inv(a, n));
- a.resize(n-1);
- a = poly_integr(a);
- return a;
-}
-
-vector<ll> poly_exp(vector<ll> a, int n) {
- vector<ll> q = {1};
- for (int len = 1; len < n; len *= 2) {
- vector<ll> p = poly_log(q, 2*len);
- for (int i = 0; i < 2*len; i++)
- p[i] = (mod - p[i] + (i < sz(a) ? a[i] : 0)) % mod;
- vector<ll> q2 = q;
- q2.resize(2*len);
- ntt(p), ntt(q2);
- for (int i = 0; i < 2*len; i++) p[i] = p[i] * q2[i] % mod;
- ntt(p, true);
- for (int i = len; i < min(n, 2*len); i++) q.push_back(p[i]);
- }
- return q;
-}
diff --git a/math/transforms/xorTransform.cpp b/math/transforms/xorTransform.cpp
deleted file mode 100644
index f9d1d82..0000000
--- a/math/transforms/xorTransform.cpp
+++ /dev/null
@@ -1,10 +0,0 @@
-void fft(vector<ll>& a, bool inv = false) {
- int n = sz(a);
- for (int s = 1; s < n; s *= 2) {
- for (int i = 0; i < n; i += 2 * s) {
- for (int j = i; j < i + s; j++) {
- ll& u = a[j], &v = a[j + s];
- tie(u, v) = pair(u + v, u - v);
- }}}
- if (inv) for (ll& x : a) x /= n;
-}