summaryrefslogtreecommitdiff
path: root/math/tables/nim.tex
diff options
context:
space:
mode:
Diffstat (limited to 'math/tables/nim.tex')
-rw-r--r--math/tables/nim.tex96
1 files changed, 96 insertions, 0 deletions
diff --git a/math/tables/nim.tex b/math/tables/nim.tex
new file mode 100644
index 0000000..75585f4
--- /dev/null
+++ b/math/tables/nim.tex
@@ -0,0 +1,96 @@
+\begin{tabularx}{\linewidth}{|p{0.37\linewidth}|X|}
+ \hline
+ \multicolumn{2}{|c|}{Nim-Spiele (\ding{182} letzter gewinnt (normal), \ding{183} letzter verliert)} \\
+ \hline
+ Beschreibung &
+ Strategie \\
+ \hline
+
+ $M = [\mathit{pile}_i]$\newline
+ $[x] := \{1, \ldots, x\}$&
+ $\mathit{SG} = \oplus_{i = 1}^n \mathit{pile}_i$\newline
+ \ding{182} Nimm von einem Stapel, sodass $\mathit{SG}$ $0$ wird.\newline
+ \ding{183} Genauso.
+ Außer: Bleiben nur noch Stapel der Größe $1$, erzeuge ungerade Anzahl solcher Stapel.\\
+ \hline
+
+ $M = \{a^m \mid m \geq 0\}$ &
+ $a$ ungerade: $\mathit{SG}_n = n \% 2$\newline
+ $a$ gerade:\newline
+ $\mathit{SG}_n = 2$, falls $n \equiv a \bmod (a + 1) $\newline
+ $\mathit{SG}_n = n \% (a + 1) \% 2$, sonst.\\
+ \hline
+
+ $M_{\text{\ding{172}}} = \left[\frac{\mathit{pile}_i}{2}\right]$\newline
+ $M_{\text{\ding{173}}} =
+ \left\{\left\lceil\frac{\mathit{pile}_i}{2}\right\rceil,~
+ \mathit{pile}_i\right\}$ &
+ \ding{172}
+ $\mathit{SG}_{2n} = n$,
+ $\mathit{SG}_{2n+1} = \mathit{SG}_n$\newline
+ \ding{173}
+ $\mathit{SG}_0 = 0$,
+ $\mathit{SG}_n = [\log_2 n] + 1$ \\
+ \hline
+
+ $M_{\text{\ding{172}}} = \text{Teiler von $\mathit{pile}_i$}$\newline
+ $M_{\text{\ding{173}}} = \text{echte Teiler von $\mathit{pile}_i$}$ &
+ \ding{172}
+ $\mathit{SG}_0 = 0$,
+ $\mathit{SG}_n = \mathit{SG}_{\text{\ding{173},n}} + 1$\newline
+ \ding{173}
+ $\mathit{ST}_1 = 0$,
+ $\mathit{SG}_n = \text{\#Nullen am Ende von $n_{bin}$}$\\
+ \hline
+
+ $M_{\text{\ding{172}}} = [k]$\newline
+ $M_{\text{\ding{173}}} = S$, ($S$ endlich)\newline
+ $M_{\text{\ding{174}}} = S \cup \{\mathit{pile}_i\}$ &
+ $\mathit{SG}_{\text{\ding{172}}, n} = n \bmod (k + 1)$\newline
+ \ding{182} Niederlage bei $\mathit{SG} = 0$\newline
+ \ding{183} Niederlage bei $\mathit{SG} = 1$\newline
+ $\mathit{SG}_{\text{\ding{174}}, n} = \mathit{SG}_{\text{\ding{173}}, n} + 1$\\
+ \hline
+
+ \multicolumn{2}{|l|}{
+ Für jedes endliche $M$ ist $\mathit{SG}$ eines Stapels irgendwann periodisch.
+ } \\
+ \hline
+
+ \textsc{Moore}'s Nim:\newline
+ Beliebige Zahl von maximal $k$ Stapeln. &
+ \ding{182}
+ Schreibe $\mathit{pile}_i$ binär.
+ Addiere ohne Übertrag zur Basis $k + 1$.
+ Niederlage, falls Ergebnis gleich 0.\newline
+ \ding{183}
+ Wenn alle Stapel $1$ sind:
+ Niederlage, wenn $n \equiv 1 \bmod (k + 1)$.
+ Sonst wie in \ding{182}.\\
+ \hline
+
+ Staircase Nim:\newline
+ $n$ Stapel in einer Reihe.
+ Beliebige Zahl von Stapel $i$ nach Stapel $i-1$. &
+ Niederlage, wenn Nim der ungeraden Spiele verloren ist:\newline
+ $\oplus_{i = 0}^{(n - 1) / 2} \mathit{pile}_{2i + 1} = 0$\\
+ \hline
+
+ \textsc{Lasker}'s Nim:\newline
+ Zwei mögliche Züge:\newline
+ 1) Nehme beliebige Zahl.\newline
+ 2) Teile Stapel in zwei Stapel (ohne Entnahme).&
+ $\mathit{SG}_n = n$, falls $n \equiv 1,2 \bmod 4$\newline
+ $\mathit{SG}_n = n + 1$, falls $n \equiv 3 \bmod 4$\newline
+ $\mathit{SG}_n = n - 1$, falls $n \equiv 0 \bmod 4$\\
+ \hline
+
+ \textsc{Kayles}' Nim:\newline
+ Zwei mögliche Züge:\newline
+ 1) Nehme beliebige Zahl.\newline
+ 2) Teile Stapel in zwei Stapel (mit Entnahme).&
+ Berechne $\mathit{SG}_n$ für kleine $n$ rekursiv.\newline
+ $n \in [72,83]: \quad 4, 1, 2, 8, 1, 4, 7, 2, 1, 8, 2, 7$\newline
+ Periode ab $n = 72$ der Länge $12$.\\
+ \hline
+\end{tabularx} \ No newline at end of file