summaryrefslogtreecommitdiff
path: root/math/math.tex
diff options
context:
space:
mode:
Diffstat (limited to 'math/math.tex')
-rw-r--r--math/math.tex62
1 files changed, 31 insertions, 31 deletions
diff --git a/math/math.tex b/math/math.tex
index 430d533..cc8d263 100644
--- a/math/math.tex
+++ b/math/math.tex
@@ -295,6 +295,37 @@ Anzahl der Teilmengen von $\mathbb{N}$, die sich zu $n$ aufaddieren mit maximale
\end{tabular}
\vspace{5mm}
+\begin{tabular}{l|l|l}
+ \toprule
+ \multicolumn{3}{c}{Reihen} \\
+ \midrule
+ $\sum\limits_{i = 1}^n i = \frac{n(n+1)}{2}$ &
+ $\sum\limits_{i = 1}^n i^2 = \frac{n(n + 1)(n + 2)}{6}$ &
+ $\sum\limits_{i = 1}^n i^3 = \frac{n^2 (n + 1)^2}{4}$ \\
+
+ $\sum\limits_{i = 0}^n c^i = \frac{c^{n + 1} - 1}{c - 1} \quad c \neq 1$ &
+ $\sum\limits_{i = 0}^\infty c^i = \frac{1}{1 - c} \quad \vert c \vert < 1$ &
+ $\sum\limits_{i = 1}^\infty c^i = \frac{c}{1 - c} \quad \vert c \vert < 1$ \\
+
+ \multicolumn{2}{l|}{
+ $\sum\limits_{i = 0}^n ic^i = \frac{nc^{n + 2} - (n + 1)c^{n + 1} + c}{(c - 1)^2} \quad c \neq 1$
+ } &
+ $\sum\limits_{i = 0}^\infty ic^i = \frac{c}{(1 - c)^2} \quad \vert c \vert < 1$ \\
+
+ $H_n = \sum\limits_{i = 1}^n \frac{1}{i}$ &
+ \multicolumn{2}{l}{
+ $\sum\limits_{i = 1}^n iH_i = \frac{n(n + 1)}{2}H_n - \frac{n(n - 1)}{4}$
+ } \\
+
+ $\sum\limits_{i = 1}^n H_i = (n + 1)H_n - n$ &
+ \multicolumn{2}{l}{
+ $\sum\limits_{i = 1}^n \binom{i}{m}H_i =
+ \binom{n + 1}{m + 1} \left(H_{n + 1} - \frac{1}{m + 1}\right)$
+ } \\
+ \bottomrule
+\end{tabular}
+\vspace{5mm}
+
\begin{tabular}{c|cccc}
\toprule
\multicolumn{5}{c}{The Twelvefold Way (verteile $n$ Bälle auf $k$ Boxen)} \\
@@ -505,37 +536,6 @@ Anzahl der Teilmengen von $\mathbb{N}$, die sich zu $n$ aufaddieren mit maximale
\end{tabular}
\vspace{5mm}
-\begin{tabular}{l|l|l}
- \toprule
- \multicolumn{3}{c}{Reihen} \\
- \midrule
- $\sum\limits_{i = 1}^n i = \frac{n(n+1)}{2}$ &
- $\sum\limits_{i = 1}^n i^2 = \frac{n(n + 1)(n + 2)}{6}$ &
- $\sum\limits_{i = 1}^n i^3 = \frac{n^2 (n + 1)^2}{4}$ \\
-
- $\sum\limits_{i = 0}^n c^i = \frac{c^{n + 1} - 1}{c - 1} \quad c \neq 1$ &
- $\sum\limits_{i = 0}^\infty c^i = \frac{1}{1 - c} \quad \vert c \vert < 1$ &
- $\sum\limits_{i = 1}^\infty c^i = \frac{c}{1 - c} \quad \vert c \vert < 1$ \\
-
- \multicolumn{2}{l|}{
- $\sum\limits_{i = 0}^n ic^i = \frac{nc^{n + 2} - (n + 1)c^{n + 1} + c}{(c - 1)^2} \quad c \neq 1$
- } &
- $\sum\limits_{i = 0}^\infty ic^i = \frac{c}{(1 - c)^2} \quad \vert c \vert < 1$ \\
-
- $H_n = \sum\limits_{i = 1}^n \frac{1}{i}$ &
- \multicolumn{2}{l}{
- $\sum\limits_{i = 1}^n iH_i = \frac{n(n + 1)}{2}H_n - \frac{n(n - 1)}{4}$
- } \\
-
- $\sum\limits_{i = 1}^n H_i = (n + 1)H_n - n$ &
- \multicolumn{2}{l}{
- $\sum\limits_{i = 1}^n \binom{i}{m}H_i =
- \binom{n + 1}{m + 1} \left(H_{n + 1} - \frac{1}{m + 1}\right)$
- } \\
- \bottomrule
-\end{tabular}
-\vspace{5mm}
-
\begin{tabular}{ll}
\toprule
\multicolumn{2}{c}{Verschiedenes} \\