summaryrefslogtreecommitdiff
path: root/content/math
diff options
context:
space:
mode:
Diffstat (limited to 'content/math')
-rw-r--r--content/math/berlekampMassey.cpp31
-rw-r--r--content/math/bigint.cpp271
-rw-r--r--content/math/binomial0.cpp14
-rw-r--r--content/math/binomial1.cpp8
-rw-r--r--content/math/binomial2.cpp32
-rw-r--r--content/math/binomial3.cpp10
-rw-r--r--content/math/chineseRemainder.cpp14
-rw-r--r--content/math/cycleDetection.cpp18
-rw-r--r--content/math/discreteLogarithm.cpp17
-rw-r--r--content/math/discreteNthRoot.cpp5
-rw-r--r--content/math/divisors.cpp11
-rw-r--r--content/math/extendedEuclid.cpp6
-rw-r--r--content/math/gauss.cpp36
-rw-r--r--content/math/gcd-lcm.cpp2
-rw-r--r--content/math/goldenSectionSearch.cpp15
-rw-r--r--content/math/inversions.cpp9
-rw-r--r--content/math/inversionsMerge.cpp27
-rw-r--r--content/math/kthperm.cpp14
-rw-r--r--content/math/legendre.cpp4
-rw-r--r--content/math/lgsFp.cpp26
-rw-r--r--content/math/linearCongruence.cpp5
-rw-r--r--content/math/linearRecurrence.cpp33
-rw-r--r--content/math/linearSieve.cpp50
-rw-r--r--content/math/longestIncreasingSubsequence.cpp17
-rw-r--r--content/math/math.tex525
-rw-r--r--content/math/matrixPower.cpp14
-rw-r--r--content/math/millerRabin.cpp19
-rw-r--r--content/math/modExp.cpp6
-rw-r--r--content/math/modMulIterativ.cpp9
-rw-r--r--content/math/modPowIterativ.cpp9
-rw-r--r--content/math/multInv.cpp4
-rw-r--r--content/math/permIndex.cpp13
-rw-r--r--content/math/piLegendre.cpp23
-rw-r--r--content/math/piLehmer.cpp52
-rw-r--r--content/math/polynomial.cpp65
-rw-r--r--content/math/primeSieve.cpp16
-rw-r--r--content/math/primitiveRoot.cpp23
-rw-r--r--content/math/rho.cpp19
-rw-r--r--content/math/shortModInv.cpp3
-rw-r--r--content/math/simpson.cpp12
-rw-r--r--content/math/sqrtModCipolla.cpp14
-rw-r--r--content/math/squfof.cpp89
-rw-r--r--content/math/tables.tex22
-rw-r--r--content/math/tables/binom.tex28
-rw-r--r--content/math/tables/nim.tex96
-rw-r--r--content/math/tables/numbers.tex59
-rw-r--r--content/math/tables/platonic.tex39
-rw-r--r--content/math/tables/prime-composite.tex26
-rw-r--r--content/math/tables/probability.tex27
-rw-r--r--content/math/tables/series.tex33
-rw-r--r--content/math/tables/stuff.tex32
-rw-r--r--content/math/tables/twelvefold.tex32
-rw-r--r--content/math/transforms/andTransform.cpp8
-rw-r--r--content/math/transforms/bitwiseTransforms.cpp12
-rw-r--r--content/math/transforms/fft.cpp23
-rw-r--r--content/math/transforms/fftMul.cpp15
-rw-r--r--content/math/transforms/multiplyBitwise.cpp8
-rw-r--r--content/math/transforms/multiplyFFT.cpp12
-rw-r--r--content/math/transforms/multiplyNTT.cpp8
-rw-r--r--content/math/transforms/ntt.cpp23
-rw-r--r--content/math/transforms/orTransform.cpp8
-rw-r--r--content/math/transforms/seriesOperations.cpp56
-rw-r--r--content/math/transforms/xorTransform.cpp10
63 files changed, 2167 insertions, 0 deletions
diff --git a/content/math/berlekampMassey.cpp b/content/math/berlekampMassey.cpp
new file mode 100644
index 0000000..29e084f
--- /dev/null
+++ b/content/math/berlekampMassey.cpp
@@ -0,0 +1,31 @@
+constexpr ll mod = 1'000'000'007;
+vector<ll> BerlekampMassey(const vector<ll>& s) {
+ int n = sz(s), L = 0, m = 0;
+ vector<ll> C(n), B(n), T;
+ C[0] = B[0] = 1;
+
+ ll b = 1;
+ for (int i = 0; i < n; i++) {
+ m++;
+ ll d = s[i] % mod;
+ for (int j = 1; j <= L; j++) {
+ d = (d + C[j] * s[i - j]) % mod;
+ }
+ if (!d) continue;
+ T = C;
+ ll coef = d * powMod(b, mod-2, mod) % mod;
+ for (int j = m; j < n; j++) {
+ C[j] = (C[j] - coef * B[j - m]) % mod;
+ }
+ if (2 * L > i) continue;
+ L = i + 1 - L;
+ swap(B, T);
+ b = d;
+ m = 0;
+ }
+
+ C.resize(L + 1);
+ C.erase(C.begin());
+ for (auto& x : C) x = (mod - x) % mod;
+ return C;
+}
diff --git a/content/math/bigint.cpp b/content/math/bigint.cpp
new file mode 100644
index 0000000..1b3b953
--- /dev/null
+++ b/content/math/bigint.cpp
@@ -0,0 +1,271 @@
+// base and base_digits must be consistent
+constexpr ll base = 1'000'000;
+constexpr ll base_digits = 6;
+struct bigint {
+ using vll = vector<ll>;
+ vll a; ll sign;
+
+ bigint() : sign(1) {}
+
+ bigint(ll v) {*this = v;}
+
+ bigint(const string &s) {read(s);}
+
+ void operator=(ll v) {
+ sign = 1;
+ if (v < 0) sign = -1, v = -v;
+ a.clear();
+ for (; v > 0; v = v / base)
+ a.push_back(v % base);
+ }
+
+ bigint operator+(const bigint& v) const {
+ if (sign == v.sign) {
+ bigint res = v;
+ for (ll i = 0, carry = 0; i < max(sz(a), sz(v.a)) || carry; ++i) {
+ if (i == sz(res.a))
+ res.a.push_back(0);
+ res.a[i] += carry + (i < sz(a) ? a[i] : 0);
+ carry = res.a[i] >= base;
+ if (carry)
+ res.a[i] -= base;
+ }
+ return res;
+ }
+ return *this - (-v);
+ }
+
+ bigint operator-(const bigint& v) const {
+ if (sign == v.sign) {
+ if (abs() >= v.abs()) {
+ bigint res = *this;
+ for (ll i = 0, carry = 0; i < sz(v.a) || carry; ++i) {
+ res.a[i] -= carry + (i < sz(v.a) ? v.a[i] : 0);
+ carry = res.a[i] < 0;
+ if (carry) res.a[i] += base;
+ }
+ res.trim();
+ return res;
+ }
+ return -(v - *this);
+ }
+ return *this + (-v);
+ }
+
+ void operator*=(ll v) {
+ if (v < 0) sign = -sign, v = -v;
+ for (ll i = 0, carry = 0; i < sz(a) || carry; ++i) {
+ if (i == sz(a)) a.push_back(0);
+ ll cur = a[i] * v + carry;
+ carry = cur / base;
+ a[i] = cur % base;
+ }
+ trim();
+ }
+
+ bigint operator*(ll v) const {
+ bigint res = *this;
+ res *= v;
+ return res;
+ }
+
+ friend pair<bigint, bigint> divmod(const bigint& a1, const bigint& b1) {
+ ll norm = base / (b1.a.back() + 1);
+ bigint a = a1.abs() * norm;
+ bigint b = b1.abs() * norm;
+ bigint q, r;
+ q.a.resize(sz(a.a));
+ for (ll i = sz(a.a) - 1; i >= 0; i--) {
+ r *= base;
+ r += a.a[i];
+ ll s1 = sz(r.a) <= sz(b.a) ? 0 : r.a[sz(b.a)];
+ ll s2 = sz(r.a) <= sz(b.a) - 1 ? 0 : r.a[sz(b.a) - 1];
+ ll d = (base * s1 + s2) / b.a.back();
+ r -= b * d;
+ while (r < 0) r += b, --d;
+ q.a[i] = d;
+ }
+ q.sign = a1.sign * b1.sign;
+ r.sign = a1.sign;
+ q.trim();
+ r.trim();
+ return make_pair(q, r / norm);
+ }
+
+ bigint operator/(const bigint& v) const {
+ return divmod(*this, v).first;
+ }
+
+ bigint operator%(const bigint& v) const {
+ return divmod(*this, v).second;
+ }
+
+ void operator/=(ll v) {
+ if (v < 0) sign = -sign, v = -v;
+ for (ll i = sz(a) - 1, rem = 0; i >= 0; --i) {
+ ll cur = a[i] + rem * base;
+ a[i] = cur / v;
+ rem = cur % v;
+ }
+ trim();
+ }
+
+ bigint operator/(ll v) const {
+ bigint res = *this;
+ res /= v;
+ return res;
+ }
+
+ ll operator%(ll v) const {
+ if (v < 0) v = -v;
+ ll m = 0;
+ for (ll i = sz(a) - 1; i >= 0; --i)
+ m = (a[i] + m * base) % v;
+ return m * sign;
+ }
+
+ void operator+=(const bigint& v) {
+ *this = *this + v;
+ }
+ void operator-=(const bigint& v) {
+ *this = *this - v;
+ }
+ void operator*=(const bigint& v) {
+ *this = *this * v;
+ }
+ void operator/=(const bigint& v) {
+ *this = *this / v;
+ }
+
+ bool operator<(const bigint& v) const {
+ if (sign != v.sign) return sign < v.sign;
+ if (sz(a) != sz(v.a))
+ return sz(a) * sign < sz(v.a) * v.sign;
+ for (ll i = sz(a) - 1; i >= 0; i--)
+ if (a[i] != v.a[i])
+ return a[i] * sign < v.a[i] * sign;
+ return false;
+ }
+
+ bool operator>(const bigint& v) const {
+ return v < *this;
+ }
+ bool operator<=(const bigint& v) const {
+ return !(v < *this);
+ }
+ bool operator>=(const bigint& v) const {
+ return !(*this < v);
+ }
+ bool operator==(const bigint& v) const {
+ return !(*this < v) && !(v < *this);
+ }
+ bool operator!=(const bigint& v) const {
+ return *this < v || v < *this;
+ }
+
+ void trim() {
+ while (!a.empty() && !a.back()) a.pop_back();
+ if (a.empty()) sign = 1;
+ }
+
+ bool isZero() const {
+ return a.empty() || (sz(a) == 1 && a[0] == 0);
+ }
+
+ bigint operator-() const {
+ bigint res = *this;
+ res.sign = -sign;
+ return res;
+ }
+
+ bigint abs() const {
+ bigint res = *this;
+ res.sign *= res.sign;
+ return res;
+ }
+
+ ll longValue() const {
+ ll res = 0;
+ for (ll i = sz(a) - 1; i >= 0; i--)
+ res = res * base + a[i];
+ return res * sign;
+ }
+
+ void read(const string& s) {
+ sign = 1;
+ a.clear();
+ ll pos = 0;
+ while (pos < sz(s) && (s[pos] == '-' || s[pos] == '+')) {
+ if (s[pos] == '-') sign = -sign;
+ ++pos;
+ }
+ for (ll i = sz(s) - 1; i >= pos; i -= base_digits) {
+ ll x = 0;
+ for (ll j = max(pos, i - base_digits + 1); j <= i; j++)
+ x = x * 10 + s[j] - '0';
+ a.push_back(x);
+ }
+ trim();
+ }
+
+ friend istream& operator>>(istream& stream, bigint& v) {
+ string s;
+ stream >> s;
+ v.read(s);
+ return stream;
+ }
+
+ friend ostream& operator<<(ostream& stream, const bigint& v) {
+ if (v.sign == -1) stream << '-';
+ stream << (v.a.empty() ? 0 : v.a.back());
+ for (ll i = sz(v.a) - 2; i >= 0; --i)
+ stream << setw(base_digits) << setfill('0') << v.a[i];
+ return stream;
+ }
+
+ static vll karatsubaMultiply(const vll& a, const vll& b) {
+ ll n = sz(a);
+ vll res(n + n);
+ if (n <= 32) {
+ for (ll i = 0; i < n; i++)
+ for (ll j = 0; j < n; j++)
+ res[i + j] += a[i] * b[j];
+ return res;
+ }
+ ll k = n >> 1;
+ vll a1(a.begin(), a.begin() + k);
+ vll a2(a.begin() + k, a.end());
+ vll b1(b.begin(), b.begin() + k);
+ vll b2(b.begin() + k, b.end());
+ vll a1b1 = karatsubaMultiply(a1, b1);
+ vll a2b2 = karatsubaMultiply(a2, b2);
+ for (ll i = 0; i < k; i++) a2[i] += a1[i];
+ for (ll i = 0; i < k; i++) b2[i] += b1[i];
+ vll r = karatsubaMultiply(a2, b2);
+ for (ll i = 0; i < sz(a1b1); i++) r[i] -= a1b1[i];
+ for (ll i = 0; i < sz(a2b2); i++) r[i] -= a2b2[i];
+ for (ll i = 0; i < sz(r); i++) res[i + k] += r[i];
+ for (ll i = 0; i < sz(a1b1); i++) res[i] += a1b1[i];
+ for (ll i = 0; i < sz(a2b2); i++) res[i + n] += a2b2[i];
+ return res;
+ }
+
+ bigint operator*(const bigint& v) const {
+ vll ta(a.begin(), a.end());
+ vll va(v.a.begin(), v.a.end());
+ while (sz(ta) < sz(va)) ta.push_back(0);
+ while (sz(va) < sz(ta)) va.push_back(0);
+ while (sz(ta) & (sz(ta) - 1))
+ ta.push_back(0), va.push_back(0);
+ vll ra = karatsubaMultiply(ta, va);
+ bigint res;
+ res.sign = sign * v.sign;
+ for (ll i = 0, carry = 0; i < sz(ra); i++) {
+ ll cur = ra[i] + carry;
+ res.a.push_back(cur % base);
+ carry = cur / base;
+ }
+ res.trim();
+ return res;
+ }
+};
diff --git a/content/math/binomial0.cpp b/content/math/binomial0.cpp
new file mode 100644
index 0000000..f37aea5
--- /dev/null
+++ b/content/math/binomial0.cpp
@@ -0,0 +1,14 @@
+constexpr ll lim = 10'000'000;
+ll fac[lim], inv[lim];
+
+void precalc() {
+ fac[0] = inv[0] = 1;
+ for (int i = 1; i < lim; i++) fac[i] = fac[i-1] * i % mod;
+ inv[lim - 1] = multInv(fac[lim - 1], mod);
+ for (int i = lim - 1; i > 0; i--) inv[i-1] = inv[i] * i % mod;
+}
+
+ll calc_binom(ll n, ll k) {
+ if (n < 0 || n < k || k < 0) return 0;
+ return (fac[n] * inv[n-k] % mod) * inv[k] % mod;
+}
diff --git a/content/math/binomial1.cpp b/content/math/binomial1.cpp
new file mode 100644
index 0000000..dab20b3
--- /dev/null
+++ b/content/math/binomial1.cpp
@@ -0,0 +1,8 @@
+ll calc_binom(ll n, ll k) {
+ if (k > n) return 0;
+ ll r = 1;
+ for (ll d = 1; d <= k; d++) {// Reihenfolge => Teilbarkeit
+ r *= n--, r /= d;
+ }
+ return r;
+}
diff --git a/content/math/binomial2.cpp b/content/math/binomial2.cpp
new file mode 100644
index 0000000..4531505
--- /dev/null
+++ b/content/math/binomial2.cpp
@@ -0,0 +1,32 @@
+constexpr ll mod = 1'000'000'009;
+
+ll binomPPow(ll n, ll k, ll p) {
+ ll res = 1;
+ if (p > n) {
+ } else if (p > n - k || (p * p > n && n % p < k % p)) {
+ res *= p;
+ res %= mod;
+ } else if (p * p <= n) {
+ ll c = 0, tmpN = n, tmpK = k;
+ while (tmpN > 0) {
+ if (tmpN % p < tmpK % p + c) {
+ res *= p;
+ res %= mod;
+ c = 1;
+ } else c = 0;
+ tmpN /= p;
+ tmpK /= p;
+ }}
+ return res;
+}
+
+ll calc_binom(ll n, ll k) {
+ if (k > n) return 0;
+ ll res = 1;
+ k = min(k, n - k);
+ for (ll i = 0; primes[i] <= n; i++) {
+ res *= binomPPow(n, k, primes[i]);
+ res %= mod;
+ }
+ return res;
+}
diff --git a/content/math/binomial3.cpp b/content/math/binomial3.cpp
new file mode 100644
index 0000000..7a6ab4e
--- /dev/null
+++ b/content/math/binomial3.cpp
@@ -0,0 +1,10 @@
+ll calc_binom(ll n, ll k, ll p) {
+ assert(n < p); //wichtig: sonst falsch!
+ if (k > n) return 0;
+ ll x = k % 2 != 0 ? p-1 : 1;
+ for (ll c = p-1; c > n; c--) {
+ x *= c - k; x %= p;
+ x *= multInv(c, p); x %= p;
+ }
+ return x;
+}
diff --git a/content/math/chineseRemainder.cpp b/content/math/chineseRemainder.cpp
new file mode 100644
index 0000000..ccbc5dc
--- /dev/null
+++ b/content/math/chineseRemainder.cpp
@@ -0,0 +1,14 @@
+struct CRT {
+ using lll = __int128;
+ lll M = 1, sol = 0; // Solution unique modulo M
+ bool hasSol = true;
+
+ // Adds congruence x = a (mod m)
+ void add(ll a, ll m) {
+ auto [d, s, t] = extendedEuclid(M, m);
+ if((a - sol) % d != 0) hasSol = false;
+ lll z = M/d * s;
+ M *= m/d;
+ sol = (z % M * (a-sol) % M + sol + M) % M;
+ }
+};
diff --git a/content/math/cycleDetection.cpp b/content/math/cycleDetection.cpp
new file mode 100644
index 0000000..5e68c0c
--- /dev/null
+++ b/content/math/cycleDetection.cpp
@@ -0,0 +1,18 @@
+pair<ll, ll> cycleDetection(ll x0, function<ll(ll)> f) {
+ ll a = x0, b = f(x0), length = 1;
+ for (ll power = 1; a != b; b = f(b), length++) {
+ if (power == length) {
+ power *= 2;
+ length = 0;
+ a = b;
+ }}
+ ll start = 0;
+ a = x0; b = x0;
+ for (ll i = 0; i < length; i++) b = f(b);
+ while (a != b) {
+ a = f(a);
+ b = f(b);
+ start++;
+ }
+ return {start, length};
+}
diff --git a/content/math/discreteLogarithm.cpp b/content/math/discreteLogarithm.cpp
new file mode 100644
index 0000000..68866e0
--- /dev/null
+++ b/content/math/discreteLogarithm.cpp
@@ -0,0 +1,17 @@
+ll dlog(ll a, ll b, ll m) { //a > 0!
+ ll bound = sqrtl(m) + 1; //memory usage bound < p
+ vector<pair<ll, ll>> vals(bound);
+ for (ll i = 0, e = 1; i < bound; i++, e = (e * a) % m) {
+ vals[i] = {e, i};
+ }
+ vals.emplace_back(m, 0);
+ sort(all(vals));
+ ll fact = powMod(a, m - bound - 1, m);
+
+ for (ll i = 0; i < m; i += bound, b = (b * fact) % m) {
+ auto it = lower_bound(all(vals), pair<ll, ll>{b, 0});
+ if (it->first == b) {
+ return (i + it->second) % m;
+ }}
+ return -1;
+}
diff --git a/content/math/discreteNthRoot.cpp b/content/math/discreteNthRoot.cpp
new file mode 100644
index 0000000..403cb3b
--- /dev/null
+++ b/content/math/discreteNthRoot.cpp
@@ -0,0 +1,5 @@
+ll root(ll a, ll b, ll m) { // a > 0!
+ ll g = findPrimitive(m);
+ ll c = dlog(powMod(g, a, m), b, m);
+ return c < 0 ? -1 : powMod(g, c, m);
+}
diff --git a/content/math/divisors.cpp b/content/math/divisors.cpp
new file mode 100644
index 0000000..5afd4fb
--- /dev/null
+++ b/content/math/divisors.cpp
@@ -0,0 +1,11 @@
+ll countDivisors(ll n) {
+ ll res = 1;
+ for (ll i = 2; i * i * i <= n; i++) {
+ ll c = 0;
+ while (n % i == 0) {n /= i; c++;}
+ res *= c + 1;
+ }
+ if (isPrime(n)) res *= 2;
+ else if (n > 1) res *= isSquare(n) ? 3 : 4;
+ return res;
+}
diff --git a/content/math/extendedEuclid.cpp b/content/math/extendedEuclid.cpp
new file mode 100644
index 0000000..ecf4a16
--- /dev/null
+++ b/content/math/extendedEuclid.cpp
@@ -0,0 +1,6 @@
+// a*x + b*y = ggt(a, b)
+array<ll, 3> extendedEuclid(ll a, ll b) {
+ if (a == 0) return {b, 0, 1};
+ auto [d, x, y] = extendedEuclid(b % a, a);
+ return {d, y - (b / a) * x, x};
+}
diff --git a/content/math/gauss.cpp b/content/math/gauss.cpp
new file mode 100644
index 0000000..8129fd2
--- /dev/null
+++ b/content/math/gauss.cpp
@@ -0,0 +1,36 @@
+void normalLine(int line) {
+ double factor = mat[line][line];
+ for (double& x : mat[line]) x /= factor;
+}
+
+void takeAll(int n, int line) {
+ for (int i = 0; i < n; i++) {
+ if (i == line) continue;
+ double diff = mat[i][line];
+ for (int j = 0; j < sz(mat[i]); j++) {
+ mat[i][j] -= diff * mat[line][j];
+}}}
+
+int gauss(int n) {
+ vector<bool> done(n, false);
+ for (int i = 0; i < n; i++) {
+ int swappee = i; // Sucht Pivotzeile für bessere Stabilität.
+ for (int j = 0; j < n; j++) {
+ if (done[j]) continue;
+ if (abs(mat[j][i]) > abs(mat[i][i])) swappee = j;
+ }
+ swap(mat[i], mat[swappee]);
+ if (abs(mat[i][i]) > EPS) {
+ normalLine(i);
+ takeAll(n, i);
+ done[i] = true;
+ }}
+ // Ab jetzt nur checks bzgl. Eindeutigkeit/Existenz der Lösung.
+ for (int i = 0; i < n; i++) {
+ bool allZero = true;
+ for (int j = i; j < n; j++) allZero &= abs(mat[i][j]) <= EPS;
+ if (allZero && abs(mat[i][n]) > EPS) return INCONSISTENT;
+ if (allZero && abs(mat[i][n]) <= EPS) return MULTIPLE;
+ }
+ return UNIQUE;
+}
diff --git a/content/math/gcd-lcm.cpp b/content/math/gcd-lcm.cpp
new file mode 100644
index 0000000..a1c63c8
--- /dev/null
+++ b/content/math/gcd-lcm.cpp
@@ -0,0 +1,2 @@
+ll gcd(ll a, ll b) {return b == 0 ? a : gcd(b, a % b);}
+ll lcm(ll a, ll b) {return a * (b / gcd(a, b));}
diff --git a/content/math/goldenSectionSearch.cpp b/content/math/goldenSectionSearch.cpp
new file mode 100644
index 0000000..28ee4c3
--- /dev/null
+++ b/content/math/goldenSectionSearch.cpp
@@ -0,0 +1,15 @@
+template<typename F>
+ld gss(ld l, ld r, F&& f) {
+ ld inv = (sqrt(5.0l) - 1) / 2;
+ ld x1 = r - inv*(r-l), x2 = l + inv*(r-l);
+ ld f1 = f(x1), f2 = f(x2);
+ for (int i = 0; i < 200; i++) {
+ if (f1 < f2) { //change to > to find maximum
+ r = x2; x2 = x1; f2 = f1;
+ x1 = r - inv*(r-l); f1 = f(x1);
+ } else {
+ l = x1; x1 = x2; f1 = f2;
+ x2 = l + inv*(r-l); f2 = f(x2);
+ }}
+ return l;
+}
diff --git a/content/math/inversions.cpp b/content/math/inversions.cpp
new file mode 100644
index 0000000..9e47f9b
--- /dev/null
+++ b/content/math/inversions.cpp
@@ -0,0 +1,9 @@
+ll inversions(const vector<ll>& v) {
+ Tree<pair<ll, ll>> t; //ordered statistics tree @\sourceref{datastructures/pbds.cpp}@
+ ll res = 0;
+ for (ll i = 0; i < sz(v); i++) {
+ res += i - t.order_of_key({v[i], i});
+ t.insert({v[i], i});
+ }
+ return res;
+}
diff --git a/content/math/inversionsMerge.cpp b/content/math/inversionsMerge.cpp
new file mode 100644
index 0000000..8235b11
--- /dev/null
+++ b/content/math/inversionsMerge.cpp
@@ -0,0 +1,27 @@
+// Laufzeit: O(n*log(n))
+ll merge(vector<ll>& v, vector<ll>& left, vector<ll>& right) {
+ int a = 0, b = 0, i = 0;
+ ll inv = 0;
+ while (a < sz(left) && b < sz(right)) {
+ if (left[a] < right[b]) v[i++] = left[a++];
+ else {
+ inv += sz(left) - a;
+ v[i++] = right[b++];
+ }
+ }
+ while (a < sz(left)) v[i++] = left[a++];
+ while (b < sz(right)) v[i++] = right[b++];
+ return inv;
+}
+
+ll mergeSort(vector<ll> &v) { // Sortiert v und gibt Inversionszahl zurück.
+ int n = sz(v);
+ vector<ll> left(n / 2), right((n + 1) / 2);
+ for (int i = 0; i < n / 2; i++) left[i] = v[i];
+ for (int i = n / 2; i < n; i++) right[i - n / 2] = v[i];
+
+ ll result = 0;
+ if (sz(left) > 1) result += mergeSort(left);
+ if (sz(right) > 1) result += mergeSort(right);
+ return result + merge(v, left, right);
+}
diff --git a/content/math/kthperm.cpp b/content/math/kthperm.cpp
new file mode 100644
index 0000000..504f09c
--- /dev/null
+++ b/content/math/kthperm.cpp
@@ -0,0 +1,14 @@
+vector<ll> kthperm(ll n, ll k) {
+ Tree<ll> t;
+ vector<ll> res(n);
+ for (ll i = 1; i <= n; k /= i, i++) {
+ t.insert(i - 1);
+ res[n - i] = k % i;
+ }
+ for (ll& x : res) {
+ auto it = t.find_by_order(x);
+ x = *it;
+ t.erase(it);
+ }
+ return res;
+}
diff --git a/content/math/legendre.cpp b/content/math/legendre.cpp
new file mode 100644
index 0000000..b85ea2a
--- /dev/null
+++ b/content/math/legendre.cpp
@@ -0,0 +1,4 @@
+ll legendre(ll a, ll p) { // p prim >= 2
+ ll s = powMod(a, p / 2, p);
+ return s < 2 ? s : -1ll;
+}
diff --git a/content/math/lgsFp.cpp b/content/math/lgsFp.cpp
new file mode 100644
index 0000000..0241742
--- /dev/null
+++ b/content/math/lgsFp.cpp
@@ -0,0 +1,26 @@
+void normalLine(int line, ll p) {
+ ll factor = multInv(mat[line][line], p);
+ for (ll& x : mat[line]) x = (x * factor) % p;
+}
+
+void takeAll(int n, int line, ll p) {
+ for (int i = 0; i < n; i++) {
+ if (i == line) continue;
+ ll diff = mat[i][line];
+ for (int j = 0; j < sz(mat[i]); j++) {
+ mat[i][j] -= (diff * mat[line][j]) % p;
+ mat[i][j] = (mat[i][j] + p) % p;
+}}}
+
+void gauss(int n, ll mod) {
+ vector<bool> done(n, false);
+ for (int i = 0; i < n; i++) {
+ int j = 0;
+ while (j < n && (done[j] || mat[j][i] == 0)) j++;
+ if (j == n) continue;
+ swap(mat[i], mat[j]);
+ normalLine(i, mod);
+ takeAll(n, i, mod);
+ done[i] = true;
+}}
+// für Eindeutigkeit, Existenz etc. siehe LGS über R @\sourceref{math/gauss.cpp}@
diff --git a/content/math/linearCongruence.cpp b/content/math/linearCongruence.cpp
new file mode 100644
index 0000000..cdb5a37
--- /dev/null
+++ b/content/math/linearCongruence.cpp
@@ -0,0 +1,5 @@
+ll solveLinearCongruence(ll a, ll b, ll m) {
+ ll g = gcd(a, m);
+ if (b % g != 0) return -1;
+ return ((b / g) * multInv(a / g, m / g)) % (m / g);
+}
diff --git a/content/math/linearRecurrence.cpp b/content/math/linearRecurrence.cpp
new file mode 100644
index 0000000..2501e64
--- /dev/null
+++ b/content/math/linearRecurrence.cpp
@@ -0,0 +1,33 @@
+constexpr ll mod = 1'000'000'007;
+vector<ll> modMul(const vector<ll>& a, const vector<ll>& b,
+ const vector<ll>& c) {
+ ll n = sz(c);
+ vector<ll> res(n * 2 + 1);
+ for (int i = 0; i <= n; i++) { //a*b
+ for (int j = 0; j <= n; j++) {
+ res[i + j] += a[i] * b[j];
+ res[i + j] %= mod;
+ }}
+ for (int i = 2 * n; i > n; i--) { //res%c
+ for (int j = 0; j < n; j++) {
+ res[i - 1 - j] += res[i] * c[j];
+ res[i - 1 - j] %= mod;
+ }}
+ res.resize(n + 1);
+ return res;
+}
+
+ll kthTerm(const vector<ll>& f, const vector<ll>& c, ll k) {
+ assert(sz(f) == sz(c));
+ vector<ll> tmp(sz(c) + 1), a(sz(c) + 1);
+ tmp[0] = a[1] = 1; //tmp = (x^k) % c
+
+ for (k++; k > 0; k /= 2) {
+ if (k & 1) tmp = modMul(tmp, a, c);
+ a = modMul(a, a, c);
+ }
+
+ ll res = 0;
+ for (int i = 0; i < sz(c); i++) res += (tmp[i+1] * f[i]) % mod;
+ return res % mod;
+}
diff --git a/content/math/linearSieve.cpp b/content/math/linearSieve.cpp
new file mode 100644
index 0000000..64440dd
--- /dev/null
+++ b/content/math/linearSieve.cpp
@@ -0,0 +1,50 @@
+constexpr ll N = 10'000'000;
+ll small[N], power[N], sieved[N];
+vector<ll> primes;
+
+//wird aufgerufen mit (p^k, p, k) für prime p und k > 0
+ll mu(ll pk, ll p, ll k) {return -(k == 1);}
+ll phi(ll pk, ll p, ll k) {return pk - pk / p;}
+ll div(ll pk, ll p, ll k) {return k+1;}
+ll divSum(ll pk, ll p, ll k) {return (pk*p-1) / (p - 1);}
+ll square(ll pk, ll p, ll k) {return k % 2 ? pk / p : pk;}
+ll squareFree(ll pk, ll p, ll k) {return p;}
+
+void sieve() { // O(N)
+ small[1] = power[1] = sieved[1] = 1;
+ for (ll i = 2; i < N; i++) {
+ if (small[i] == 0) {
+ primes.push_back(i);
+ for (ll pk = i, k = 1; pk < N; pk *= i, k++) {
+ small[pk] = i;
+ power[pk] = pk;
+ sieved[pk] = mu(pk, i, k); // Aufruf ändern!
+ }}
+ for (ll j=0; i*primes[j] < N && primes[j] < small[i]; j++) {
+ ll k = i * primes[j];
+ small[k] = power[k] = primes[j];
+ sieved[k] = sieved[i] * sieved[primes[j]];
+ }
+ if (i * small[i] < N && power[i] != i) {
+ ll k = i * small[i];
+ small[k] = small[i];
+ power[k] = power[i] * small[i];
+ sieved[k] = sieved[power[k]] * sieved[k / power[k]];
+}}}
+
+ll naive(ll n) { // O(sqrt(n))
+ ll res = 1;
+ for (ll p = 2; p * p <= n; p++) {
+ if (n % p == 0) {
+ ll pk = 1;
+ ll k = 0;
+ do {
+ n /= p;
+ pk *= p;
+ k++;
+ } while (n % p == 0);
+ res *= mu(pk, p, k); // Aufruf ändern!
+ }}
+ if (n > 1) res *= mu(n, n, 1);
+ return res;
+}
diff --git a/content/math/longestIncreasingSubsequence.cpp b/content/math/longestIncreasingSubsequence.cpp
new file mode 100644
index 0000000..fcb63b4
--- /dev/null
+++ b/content/math/longestIncreasingSubsequence.cpp
@@ -0,0 +1,17 @@
+vector<int> lis(vector<ll>& a) {
+ int n = sz(a), len = 0;
+ vector<ll> dp(n, INF), dp_id(n), prev(n);
+ for (int i = 0; i < n; i++) {
+ int pos = lower_bound(all(dp), a[i]) - dp.begin();
+ dp[pos] = a[i];
+ dp_id[pos] = i;
+ prev[i] = pos ? dp_id[pos - 1] : -1;
+ len = max(len, pos + 1);
+ }
+ // reconstruction
+ vector<int> res(len);
+ for (int x = dp_id[len-1]; len--; x = prev[x]) {
+ res[len] = x;
+ }
+ return res; // indices of one LIS
+}
diff --git a/content/math/math.tex b/content/math/math.tex
new file mode 100644
index 0000000..f670a70
--- /dev/null
+++ b/content/math/math.tex
@@ -0,0 +1,525 @@
+\section{Mathe}
+
+\begin{algorithm}{Longest Increasing Subsequence}
+ \begin{itemize}
+ \item \code{lower\_bound} $\Rightarrow$ streng monoton
+ \item \code{upper\_bound} $\Rightarrow$ monoton
+ \end{itemize}
+ \sourcecode{math/longestIncreasingSubsequence.cpp}
+\end{algorithm}
+\vfill\null\columnbreak
+
+\begin{algorithm}{Zykel Erkennung}
+ \begin{methods}
+ \method{cycleDetection}{findet Zyklus von $x_0$ und Länge in $f$}{b+l}
+ \end{methods}
+ \sourcecode{math/cycleDetection.cpp}
+\end{algorithm}
+
+\begin{algorithm}{Permutationen}
+ \begin{methods}
+ \method{kthperm}{findet $k$-te Permutation \big($k \in [0, n!$)\big)}{n\*\log(n)}
+ \end{methods}
+ \sourcecode{math/kthperm.cpp}
+ \begin{methods}
+ \method{permIndex}{bestimmt Index der Permutation \big($\mathit{res} \in [0, n!$)\big)}{n\*\log(n)}
+ \end{methods}
+ \sourcecode{math/permIndex.cpp}
+\end{algorithm}
+\columnbreak
+
+\subsection{Mod-Exponent und Multiplikation über $\boldsymbol{\mathbb{F}_p}$}
+%\vspace{-1.25em}
+%\begin{multicols}{2}
+\method{mulMod}{berechnet $a \cdot b \bmod n$}{\log(b)}
+\sourcecode{math/modMulIterativ.cpp}
+% \vfill\null\columnbreak
+\method{powMod}{berechnet $a^b \bmod n$}{\log(b)}
+\sourcecode{math/modPowIterativ.cpp}
+%\end{multicols}
+%\vspace{-2.75em}
+\begin{itemize}
+ \item für $a > 10^9$ \code{__int128} oder \code{modMul} benutzten!
+\end{itemize}
+
+\begin{algorithm}{ggT, kgV, erweiterter euklidischer Algorithmus}
+ \runtime{\log(a) + \log(b)}
+ \sourcecode{math/extendedEuclid.cpp}
+\end{algorithm}
+
+\subsection{Multiplikatives Inverses von $\boldsymbol{x}$ in $\boldsymbol{\mathbb{Z}/m\mathbb{Z}}$}
+\textbf{Falls $\boldsymbol{m}$ prim:}\quad $x^{-1} \equiv x^{m-2} \bmod m$
+
+\textbf{Falls $\boldsymbol{\ggT(x, m) = 1}$:}
+\begin{itemize}
+ \item Erweiterter euklidischer Algorithmus liefert $\alpha$ und $\beta$ mit
+ $\alpha x + \beta m = 1$.
+ \item Nach Kongruenz gilt $\alpha x + \beta m \equiv \alpha x \equiv 1 \bmod m$.
+ \item $x^{-1} :\equiv \alpha \bmod m$
+\end{itemize}
+\textbf{Sonst $\boldsymbol{\ggT(x, m) > 1}$:}\quad Es existiert kein $x^{-1}$.
+% \sourcecode{math/multInv.cpp}
+\sourcecode{math/shortModInv.cpp}
+
+\paragraph{Lemma von \textsc{Bézout}}
+Sei $(x, y)$ eine Lösung der diophantischen Gleichung $ax + by = d$.
+Dann lassen sich wie folgt alle Lösungen berechnen:
+\[
+\left(x + k\frac{b}{\ggT(a, b)},~y - k\frac{a}{\ggT(a, b)}\right)
+\]
+
+\paragraph{\textsc{Pell}-Gleichungen}
+Sei $(\overline{x}, \overline{y})$ die Lösung von $x^2 - ny^2 = 1$, die $x>1$ minimiert.
+Sei $(\tilde{x}, \tilde{y})$ die Lösung von $x^2-ny^2 = c$, die $x>1$ minimiert. Dann lassen
+sich alle Lösungen von $x^2-ny^2=c$ berechnen durch:
+\begin{align*}
+ x_1&\coloneqq \tilde{x}, & y_1&\coloneqq\tilde{y}\\
+ x_{k+1}&\coloneqq \overline{x}x_k+n\overline{y}y_k, & y_{k+1}&\coloneqq\overline{x}y_k+\overline{y}x_k
+\end{align*}
+
+\begin{algorithm}{Lineare Kongruenz}
+ \begin{itemize}
+ \item Kleinste Lösung $x$ für $ax\equiv b\pmod{m}$.
+ \item Weitere Lösungen unterscheiden sich um \raisebox{2pt}{$\frac{m}{g}$}, es gibt
+ also $g$ Lösungen modulo $m$.
+ \end{itemize}
+ \sourcecode{math/linearCongruence.cpp}
+\end{algorithm}
+
+\begin{algorithm}{Chinesischer Restsatz}
+ \begin{itemize}
+ \item Extrem anfällig gegen Overflows. Evtl. häufig 128-Bit Integer verwenden.
+ \item Direkte Formel für zwei Kongruenzen $x \equiv a \bmod n$, $x \equiv b \bmod m$:
+ \[
+ x \equiv a - y \cdot n \cdot \frac{a - b}{d} \bmod \frac{mn}{d}
+ \qquad \text{mit} \qquad
+ d := \ggT(n, m) = yn + zm
+ \]
+ Formel kann auch für nicht teilerfremde Moduli verwendet werden.
+ Sind die Moduli nicht teilerfremd, existiert genau dann eine Lösung,
+ wenn $a\equiv~b \bmod \ggT(m, n)$.
+ In diesem Fall sind keine Faktoren
+ auf der linken Seite erlaubt.
+ \end{itemize}
+ \sourcecode{math/chineseRemainder.cpp}
+\end{algorithm}
+
+\begin{algorithm}{Primzahltest \& Faktorisierung}
+ \method{isPrime}{prüft ob Zahl prim ist}{\log(n)^2}
+ \sourcecode{math/millerRabin.cpp}
+ \method{rho}{findet zufälligen Teiler}{\sqrt[\leftroot{3}\uproot{2}4]{n}}
+ \sourcecode{math/rho.cpp}
+ %\method{squfof}{findet zufälligen Teiler}{\sqrt[\leftroot{4}\uproot{2}4]{n}}
+ %\sourcecode{math/squfof.cpp}
+\end{algorithm}
+
+\begin{algorithm}{Teiler}
+ \begin{methods}
+ \method{countDivisors}{Zählt Teiler von $n$}{\sqrt[\leftroot{3}\uproot{2}3]{n}}
+ \end{methods}
+ \sourcecode{math/divisors.cpp}
+\end{algorithm}
+
+\begin{algorithm}{Matrix-Exponent}
+ \begin{methods}
+ \method{precalc}{berechnet $m^{2^b}$ vor}{\log(b)\*n^3}
+ \method{calc}{berechnet $m^b\cdot$}{\log(b)\cdot n^2}
+ \end{methods}
+ \textbf{Tipp:} wenn \code{v[x]=1} und \code{0} sonst, dann ist \code{res[y]} = $m^b_{y,x}$.
+ \sourcecode{math/matrixPower.cpp}
+\end{algorithm}
+
+\begin{algorithm}{Lineare Rekurrenz}
+ \begin{methods}
+ \method{BerlekampMassey}{Berechnet eine lineare Rekurrenz $n$-ter Ordnung}{n^2}
+ \method{}{aus den ersten $2n$ Werte}{}
+ \end{methods}
+ \sourcecode{math/berlekampMassey.cpp}
+ Sei $f(n)=c_{0}f(n-1)+c_{1}f(n-2)+\dots + c_{n-1}f(0)$ eine lineare Rekurrenz.
+
+ \begin{methods}
+ \method{kthTerm}{Berechnet $k$-ten Term einer Rekurrenz $n$-ter Ordnung}{\log(k)\cdot n^2}
+ \end{methods}
+ \sourcecode{math/linearRecurrence.cpp}
+ Alternativ kann der \mbox{$k$-te} Term in \runtime{n^3\log(k)} berechnet werden:
+ $$\renewcommand\arraystretch{1.5}
+ \setlength\arraycolsep{3pt}
+ \begin{pmatrix}
+ c_{0} & c_{1} & \smash{\cdots} & \smash{\cdots} & c_{n-1} \\
+ 1 & 0 & \smash{\cdots} & \smash{\cdots} & 0 \\
+ 0 & \smash{\ddots} & \smash{\ddots} & & \smash{\vdots} \\
+ \smash{\vdots} & \smash{\ddots} & \smash{\ddots} & \smash{\ddots} & \smash{\vdots} \\
+ 0 & \smash{\cdots} & 0 & 1 & 0 \\
+ \end{pmatrix}^k
+ \times~~
+ \begin{pmatrix}
+ f(n-1) \\
+ f(n-2) \\
+ \smash{\vdots} \\
+ \smash{\vdots} \\
+ f(0) \\
+ \end{pmatrix}
+ ~~=~~
+ \begin{pmatrix}
+ f(n-1+k) \\
+ f(n-2+k) \\
+ \smash{\vdots} \\
+ \smash{\vdots} \\
+ f(k) \makebox[0pt][l]{\hspace{15pt}$\vcenter{\hbox{\huge$\leftarrow$}}$}\\
+ \end{pmatrix}
+ $$
+\end{algorithm}
+
+\begin{algorithm}{Diskreter Logarithmus}
+ \begin{methods}
+ \method{solve}{bestimmt Lösung $x$ für $a^x=b \bmod m$}{\sqrt{m}\*\log(m)}
+ \end{methods}
+ \sourcecode{math/discreteLogarithm.cpp}
+\end{algorithm}
+
+\begin{algorithm}{Diskrete Quadratwurzel}
+ \begin{methods}
+ \method{sqrtMod}{bestimmt Lösung $x$ für $x^2=a \bmod p$ }{\log(p)}
+ \end{methods}
+ \textbf{Wichtig:} $p$ muss prim sein!
+ \sourcecode{math/sqrtModCipolla.cpp}
+\end{algorithm}
+%\columnbreak
+
+\begin{algorithm}{Primitivwurzeln}
+ \begin{itemize}
+ \item Primitivwurzel modulo $n$ existiert $\Leftrightarrow$ $n \in \{2,\ 4,\ p^\alpha,\ 2\cdot p^\alpha \mid\ 2 < p \in \mathbb{P},\ \alpha \in \mathbb{N}\}$
+ \item es existiert entweder keine oder $\varphi(\varphi(n))$ inkongruente Primitivwurzeln
+ \item Sei $g$ Primitivwurzel modulo $n$.
+ Dann gilt:\newline
+ Das kleinste $k$, sodass $g^k \equiv 1 \bmod n$, ist $k = \varphi(n)$.
+ \end{itemize}
+ \begin{methods}
+ \method{isPrimitive}{prüft ob $g$ eine Primitivwurzel ist}{\log(\varphi(n))\*\log(n)}
+ \method{findPrimitive}{findet Primitivwurzel (oder -1)}{\abs{ans}\*\log(\varphi(n))\*\log(n)}
+ \end{methods}
+ \sourcecode{math/primitiveRoot.cpp}
+\end{algorithm}
+
+\begin{algorithm}{Diskrete \textrm{\textit{n}}-te Wurzel}
+ \begin{methods}
+ \method{root}{bestimmt Lösung $x$ für $x^a=b \bmod m$ }{\sqrt{m}\*\log(m)}
+ \end{methods}
+ Alle Lösungen haben die Form $g^{c + \frac{i \cdot \phi(n)}{\gcd(a, \phi(n))}}$
+ \sourcecode{math/discreteNthRoot.cpp}
+\end{algorithm}
+
+\begin{algorithm}{\textsc{Legendre}-Symbol}
+ Sei $p \geq 3$ eine Primzahl, $a \in \mathbb{Z}$:
+ \vspace{-0.15cm}\begin{align*}
+ \hspace*{3cm}\legendre{a}{p} &=
+ \begin{cases*}
+ \hphantom{-}0 & falls $p~\vert~a$ \\[-1ex]
+ \hphantom{-}1 & falls $\exists x \in \mathbb{Z}\backslash p\mathbb{Z} : a \equiv x^2 \bmod p$ \\[-1ex]
+ -1 & sonst
+ \end{cases*} \\
+ \legendre{-1}{p} = (-1)^{\frac{p - 1}{2}} &=
+ \begin{cases*}
+ \hphantom{-}1 & falls $p \equiv 1 \bmod 4$ \\[-1ex]
+ -1 & falls $p \equiv 3 \bmod 4$
+ \end{cases*} \\
+ \legendre{2}{p} = (-1)^{\frac{p^2 - 1}{8}} &=
+ \begin{cases*}
+ \hphantom{-}1 & falls $p \equiv \pm 1 \bmod 8$ \\[-1ex]
+ -1 & falls $p \equiv \pm 3 \bmod 8$
+ \end{cases*}
+ \end{align*}
+ \begin{align*}
+ \legendre{p}{q} \cdot \legendre{q}{p} = (-1)^{\frac{p - 1}{2} \cdot \frac{q - 1}{2}} &&
+ \legendre{a}{p} \equiv a^{\frac{p-1}{2}}\bmod p
+ \end{align*}
+ \vspace{-0.05cm}
+ \sourcecode{math/legendre.cpp}
+\end{algorithm}
+
+\begin{algorithm}{Lineares Sieb und multiplikative Funktionen}
+ Eine (zahlentheoretische) Funktion $f$ heißt multiplikativ wenn $f(1)=1$ und $f(a\cdot b)=f(a)\cdot f(b)$, falls $\ggT(a,b)=1$.
+
+ $\Rightarrow$ Es ist ausreichend $f(p^k)$ für alle primen $p$ und alle $k$ zu kennen.
+
+ \begin{methods}
+ \method{sieve}{berechnet Primzahlen und co.}{N}
+ \method{sieved}{Wert der entsprechenden multiplikativen Funktion}{1}
+
+ \method{naive}{Wert der entsprechenden multiplikativen Funktion}{\sqrt{n}}
+ \end{methods}
+ \textbf{Wichtig:} Sieb rechts ist schneller für \code{isPrime} oder \code{primes}!
+
+ \sourcecode{math/linearSieve.cpp}
+ \textbf{\textsc{Möbius} Funktion:}
+ \begin{itemize}
+ \item $\mu(n)=+1$, falls $n$ quadratfrei ist und gerade viele Primteiler hat
+ \item $\mu(n)=-1$, falls $n$ quadratfrei ist und ungerade viele Primteiler hat
+ \item $\mu(n)=0$, falls $n$ nicht quadratfrei ist
+ \end{itemize}
+
+ \textbf{\textsc{Euler}sche $\boldsymbol{\varphi}$-Funktion:}
+ \begin{itemize}
+ \item Zählt die relativ primen Zahlen $\leq n$.
+ \item $p$ prim, $k \in \mathbb{N}$:
+ $~\varphi(p^k) = p^k - p^{k - 1}$
+
+ \item \textbf{\textsc{Euler}'s Theorem:}
+ Für $b \geq \varphi(c)$ gilt: $a^b \equiv a^{b \bmod \varphi(c) + \varphi(c)} \pmod{c}$. Darüber hinaus gilt: $\gcd(a, c) = 1 \Leftrightarrow a^b \equiv a^{b \bmod \varphi(c)} \pmod{c}$.
+ Falls $m$ prim ist, liefert das den \textbf{kleinen Satz von \textsc{Fermat}}:
+ $a^{m} \equiv a \pmod{m}$
+ \end{itemize}
+\end{algorithm}
+
+\begin{algorithm}{Primzahlsieb von \textsc{Eratosthenes}}
+ \begin{itemize}
+ \item Bis $10^8$ in unter 64MB Speicher (lange Berechnung)
+ \end{itemize}
+ \begin{methods}
+ \method{primeSieve}{berechnet Primzahlen und Anzahl}{N\*\log(\log(N))}
+ \method{isPrime}{prüft ob Zahl prim ist}{1}
+ \end{methods}
+ \sourcecode{math/primeSieve.cpp}
+\end{algorithm}
+
+\begin{algorithm}{\textsc{Möbius}-Inversion}
+ \begin{itemize}
+ \item Seien $f,g : \mathbb{N} \to \mathbb{N}$ und $g(n) := \sum_{d \vert n}f(d)$.
+ Dann ist $f(n) = \sum_{d \vert n}g(d)\mu(\frac{n}{d})$.
+ \item $\sum\limits_{d \vert n}\mu(d) =
+ \begin{cases*}
+ 1 & falls $n = 1$\\
+ 0 & sonst
+ \end{cases*}$
+ \end{itemize}
+ \textbf{Beispiel Inklusion/Exklusion:}
+ Gegeben sein eine Sequenz $A={a_1,\ldots,a_n}$ von Zahlen, $1 \leq a_i \leq N$. Zähle die Anzahl der \emph{coprime subsequences}.\newline
+ \textbf{Lösung}:
+ Für jedes $x$, sei $cnt[x]$ die Anzahl der Vielfachen von $x$ in $A$.
+ Es gibt $2^{[x]}-1$ nicht leere Subsequences in $A$, die nur Vielfache von $x$ enthalten.
+ Die Anzahl der Subsequences mit $\ggT=1$ ist gegeben durch $\sum_{i = 1}^N \mu(i) \cdot (2^{cnt[i]} - 1)$.
+\end{algorithm}
+
+\subsection{LGS über $\boldsymbol{\mathbb{F}_p}$}
+\method{gauss}{löst LGS}{n^3}
+\sourcecode{math/lgsFp.cpp}
+
+\subsection{LGS über $\boldsymbol{\mathbb{R}}$}
+\method{gauss}{löst LGS}{n^3}
+\sourcecode{math/gauss.cpp}
+
+\vfill\null\columnbreak
+
+\begin{algorithm}{Numerisch Extremstelle bestimmen}
+ \sourcecode{math/goldenSectionSearch.cpp}
+\end{algorithm}
+
+\begin{algorithm}{Numerisch Integrieren, Simpsonregel}
+ \sourcecode{math/simpson.cpp}
+\end{algorithm}
+
+
+\begin{algorithm}{Polynome, FFT, NTT \& andere Transformationen}
+ Multipliziert Polynome $A$ und $B$.
+ \begin{itemize}
+ \item $\deg(A \cdot B) = \deg(A) + \deg(B)$
+ \item Vektoren \code{a} und \code{b} müssen mindestens Größe
+ $\deg(A \cdot B) + 1$ haben.
+ Größe muss eine Zweierpotenz sein.
+ \item Für ganzzahlige Koeffizienten: \code{(ll)round(real(a[i]))}
+ \item \emph{xor}, \emph{or} und \emph{and} Transform funktioniert auch mit \code{double} oder modulo einer Primzahl $p$ falls $p \geq 2^{\texttt{bits}}$
+ \end{itemize}
+ %\sourcecode{math/fft.cpp}
+ %\sourcecode{math/ntt.cpp}
+ \sourcecode{math/transforms/fft.cpp}
+ \sourcecode{math/transforms/ntt.cpp}
+ \sourcecode{math/transforms/bitwiseTransforms.cpp}
+ Multiplikation mit 2 transforms statt 3: (nur benutzten wenn nötig!)
+ \sourcecode{math/transforms/fftMul.cpp}
+\end{algorithm}
+
+\begin{algorithm}{Operations on Formal Power Series}
+ \sourcecode{math/transforms/seriesOperations.cpp}
+\end{algorithm}
+
+\begin{algorithm}{Inversionszahl}
+ \sourcecode{math/inversions.cpp}
+\end{algorithm}
+
+\subsection{Satz von \textsc{Sprague-Grundy}}
+Weise jedem Zustand $X$ wie folgt eine \textsc{Grundy}-Zahl $g\left(X\right)$ zu:
+\[
+g\left(X\right) := \min\left\{
+\mathbb{Z}_0^+ \setminus
+\left\{g\left(Y\right) \mid Y \text{ von } X \text{ aus direkt erreichbar}\right\}
+\right\}
+\]
+$X$ ist genau dann gewonnen, wenn $g\left(X\right) > 0$ ist.\\
+Wenn man $k$ Spiele in den Zuständen $X_1, \ldots, X_k$ hat, dann ist die \textsc{Grundy}-Zahl des Gesamtzustandes $g\left(X_1\right) \oplus \ldots \oplus g\left(X_k\right)$.
+
+\subsection{Kombinatorik}
+
+\paragraph{\textsc{Wilson}'s Theorem}
+A number $n$ is prime if and only if
+$(n-1)!\equiv -1\bmod{n}$.\\
+($n$ is prime if and only if $(m-1)!\cdot(n-m)!\equiv(-1)^m\bmod{n}$ for all $m$ in $\{1,\dots,n\}$)
+\begin{align*}
+ (n-1)!\equiv\begin{cases}
+ -1\bmod{n},&\mathrm{falls}~n \in \mathbb{P}\\
+ \hphantom{-}2\bmod{n},&\mathrm{falls}~n = 4\\
+ \hphantom{-}0\bmod{n},&\mathrm{sonst}
+ \end{cases}
+\end{align*}
+
+\paragraph{\textsc{Zeckendorf}'s Theorem}
+Jede positive natürliche Zahl kann eindeutig als Summe einer oder mehrerer
+verschiedener \textsc{Fibonacci}-Zahlen geschrieben werden, sodass keine zwei
+aufeinanderfolgenden \textsc{Fibonacci}-Zahlen in der Summe vorkommen.\\
+\emph{Lösung:} Greedy, nimm immer die größte \textsc{Fibonacci}-Zahl, die noch
+hineinpasst.
+
+\paragraph{\textsc{Lucas}'s Theorem}
+Ist $p$ prim, $m=\sum_{i=0}^km_ip^i$, $n=\sum_{i=0}^kn_ip^i$ ($p$-adische Darstellung),
+so gilt
+\vspace{-0.75\baselineskip}
+\[
+ \binom{m}{n} \equiv \prod_{i=0}^k\binom{m_i}{n_i} \bmod{p}.
+\]
+
+%\begin{algorithm}{Binomialkoeffizienten}
+\paragraph{Binomialkoeffizienten}
+ Die Anzahl der \mbox{$k$-elementigen} Teilmengen einer \mbox{$n$-elementigen} Menge.
+
+ \begin{methods}
+ \method{precalc}{berechnet $n!$ und $n!^{-1}$ vor}{\mathit{lim}}
+ \method{calc\_binom}{berechnet Binomialkoeffizient}{1}
+ \end{methods}
+ \sourcecode{math/binomial0.cpp}
+ Falls $n >= p$ for $\mathit{mod}=p^k$ berechne \textit{fac} und \textit{inv} aber teile $p$ aus $i$ und berechne die häufigkeit von $p$ in $n!$ als $\sum\limits_{i=1}\big\lfloor\frac{n}{p^i}\big\rfloor$
+
+ \begin{methods}
+ \method{calc\_binom}{berechnet Binomialkoeffizient $(n \le 61)$}{k}
+ \end{methods}
+ \sourcecode{math/binomial1.cpp}
+
+ \begin{methods}
+ \method{calc\_binom}{berechnet Binomialkoeffizient modulo Primzahl $p$}{p-n}
+ \end{methods}
+ \sourcecode{math/binomial3.cpp}
+
+% \begin{methods}
+% \method{calc\_binom}{berechnet Primfaktoren vom Binomialkoeffizient}{n}
+% \end{methods}
+% \textbf{WICHTIG:} braucht alle Primzahlen $\leq n$
+% \sourcecode{math/binomial2.cpp}
+%\end{algorithm}
+
+\paragraph{\textsc{Catalan}-Zahlen}
+\begin{itemize}
+ \item Die \textsc{Catalan}-Zahl $C_n$ gibt an:
+ \begin{itemize}
+ \item Anzahl der Binärbäume mit $n$ nicht unterscheidbaren Knoten.
+ \item Anzahl der validen Klammerausdrücke mit $n$ Klammerpaaren.
+ \item Anzahl der korrekten Klammerungen von $n+1$ Faktoren.
+ \item Anzahl Möglichkeiten ein konvexes Polygon mit $n + 2$ Ecken zu triangulieren.
+ \item Anzahl der monotonen Pfade (zwischen gegenüberliegenden Ecken) in
+ einem $n \times n$-Gitter, die nicht die Diagonale kreuzen.
+ \end{itemize}
+\end{itemize}
+\[C_0 = 1\qquad C_n = \sum\limits_{k = 0}^{n - 1} C_kC_{n - 1 - k} =
+\frac{1}{n + 1}\binom{2n}{n} = \frac{4n - 2}{n+1} \cdot C_{n-1}\]
+\begin{itemize}
+ \item Formel $1$ erlaubt Berechnung ohne Division in \runtime{n^2}
+ \item Formel $2$ und $3$ erlauben Berechnung in \runtime{n}
+\end{itemize}
+
+\paragraph{\textsc{Catalan}-Convolution}
+\begin{itemize}
+ \item Anzahl an Klammerausdrücken mit $n+k$ Klammerpaaren, die mit $(^k$ beginnen.
+\end{itemize}
+\[C^k_0 = 1\qquad C^k_n = \sum\limits_{\mathclap{a_0+a_1+\dots+a_k=n}} C_{a_0}C_{a_1}\cdots C_{a_k} =
+\frac{k+1}{n+k+1}\binom{2n+k}{n} = \frac{(2n+k-1)\cdot(2n+k)}{n(n+k+1)} \cdot C_{n-1}\]
+
+\paragraph{\textsc{Euler}-Zahlen 1. Ordnung}
+Die Anzahl der Permutationen von $\{1, \ldots, n\}$ mit genau $k$ Anstiegen.
+Für die $n$-te Zahl gibt es $n$ mögliche Positionen zum Einfügen.
+Dabei wird entweder ein Anstieg in zwei gesplitted oder ein Anstieg um $n$ ergänzt.
+\[\eulerI{n}{0} = \eulerI{n}{n-1} = 1 \quad
+\eulerI{n}{k} = (k+1) \eulerI{n-1}{k} + (n-k) \eulerI{n-1}{k-1}=
+\sum_{i=0}^{k} (-1)^i\binom{n+1}{i}(k+1-i)^n\]
+\begin{itemize}
+ \item Formel $1$ erlaubt Berechnung ohne Division in \runtime{n^2}
+ \item Formel $2$ erlaubt Berechnung in \runtime{n\log(n)}
+\end{itemize}
+
+\paragraph{\textsc{Euler}-Zahlen 2. Ordnung}
+Die Anzahl der Permutationen von $\{1,1, \ldots, n,n\}$ mit genau $k$ Anstiegen.
+\[\eulerII{n}{0} = 1 \qquad\eulerII{n}{n} = 0 \qquad\eulerII{n}{k} = (k+1) \eulerII{n-1}{k} + (2n-k-1) \eulerII{n-1}{k-1}\]
+\begin{itemize}
+ \item Formel erlaubt Berechnung ohne Division in \runtime{n^2}
+\end{itemize}
+
+\paragraph{\textsc{Stirling}-Zahlen 1. Ordnung}
+Die Anzahl der Permutationen von $\{1, \ldots, n\}$ mit genau $k$ Zyklen.
+Es gibt zwei Möglichkeiten für die $n$-te Zahl. Entweder sie bildet einen eigene Zyklus, oder sie kann an jeder Position in jedem Zyklus einsortiert werden.
+\[\stirlingI{0}{0} = 1 \qquad
+\stirlingI{n}{0} = \stirlingI{0}{n} = 0 \qquad
+\stirlingI{n}{k} = \stirlingI{n-1}{k-1} + (n-1) \stirlingI{n-1}{k}\]
+\begin{itemize}
+ \item Formel erlaubt berechnung ohne Division in \runtime{n^2}
+\end{itemize}
+\[\sum_{k=0}^{n}\pm\stirlingI{n}{k}x^k=x(x-1)(x-2)\cdots(x-n+1)\]
+\begin{itemize}
+ \item Berechne Polynom mit FFT und benutzte betrag der Koeffizienten \runtime{n\log(n)^2} (nur ungefähr gleich große Polynome zusammen multiplizieren beginnend mit $x-k$)
+\end{itemize}
+
+\paragraph{\textsc{Stirling}-Zahlen 2. Ordnung}
+Die Anzahl der Möglichkeiten $n$ Elemente in $k$ nichtleere Teilmengen zu zerlegen.
+Es gibt $k$ Möglichkeiten die $n$ in eine $n-1$-Partition einzuordnen.
+Dazu kommt der Fall, dass die $n$ in ihrer eigenen Teilmenge (alleine) steht.
+\[\stirlingII{n}{1} = \stirlingII{n}{n} = 1 \qquad
+\stirlingII{n}{k} = k \stirlingII{n-1}{k} + \stirlingII{n-1}{k-1} =
+\frac{1}{k!} \sum\limits_{i=0}^{k} (-1)^{k-i}\binom{k}{i}i^n\]
+\begin{itemize}
+ \item Formel $1$ erlaubt Berechnung ohne Division in \runtime{n^2}
+ \item Formel $2$ erlaubt Berechnung in \runtime{n\log(n)}
+\end{itemize}
+
+\paragraph{\textsc{Bell}-Zahlen}
+Anzahl der Partitionen von $\{1, \ldots, n\}$.
+Wie \textsc{Stirling}-Zahlen 2. Ordnung ohne Limit durch $k$.
+\[B_1 = 1 \qquad
+B_n = \sum\limits_{k = 0}^{n - 1} B_k\binom{n-1}{k}
+= \sum\limits_{k = 0}^{n}\stirlingII{n}{k}\qquad\qquad B_{p^m+n}\equiv m\cdot B_n + B_{n+1} \bmod{p}\]
+
+\paragraph{Partitions}
+Die Anzahl der Partitionen von $n$ in genau $k$ positive Summanden.
+Die Anzahl der Partitionen von $n$ mit Elementen aus ${1,\dots,k}$.
+\begin{align*}
+ p_0(0)=1 \qquad p_k(n)&=0 \text{ für } k > n \text{ oder } n \leq 0 \text{ oder } k \leq 0\\
+ p_k(n)&= p_k(n-k) + p_{k-1}(n-1)\\[2pt]
+ p(n)&=\sum_{k=1}^{n} p_k(n)=p_n(2n)=\sum\limits_{k\neq0}^\infty(-1)^{k+1}p\bigg(n - \frac{k(3k-1)}{2}\bigg)
+\end{align*}
+\begin{itemize}
+ \item in Formel $3$ kann abgebrochen werden wenn $\frac{k(3k-1)}{2} > n$.
+ \item Die Anzahl der Partitionen von $n$ in bis zu $k$ positive Summanden ist $\sum\limits_{i=0}^{k}p_i(n)=p_k(n+k)$.
+\end{itemize}
+
+\subsection{The Twelvefold Way \textnormal{(verteile $n$ Bälle auf $k$ Boxen)}}
+\input{math/tables/twelvefold}
+
+\optional{
+\subsection{Primzahlzählfunktion $\boldsymbol{\pi}$}
+\begin{methods}
+ \method{init}{berechnet $\pi$ bis $N$}{N\*\log(\log(N))}
+ \method{phi}{zählt zu $p_i$ teilerfremde Zahlen $\leq n$ für alle $i \leq k$}{???}
+ \method{pi}{zählt Primzahlen $\leq n$ ($n < N^2$)}{n^{2/3}}
+\end{methods}
+\sourcecode{math/piLehmer.cpp}
+}
+
+%\input{math/tables/numbers}
+
+\begin{algorithm}[optional]{Big Integers}
+ \sourcecode{math/bigint.cpp}
+\end{algorithm}
diff --git a/content/math/matrixPower.cpp b/content/math/matrixPower.cpp
new file mode 100644
index 0000000..d981e6e
--- /dev/null
+++ b/content/math/matrixPower.cpp
@@ -0,0 +1,14 @@
+vector<mat> pows;
+
+void precalc(mat m) {
+ pows = {mat(sz(m.m), 1), m};
+ for (int i = 1; i < 60; i++) pows.push_back(pows[i] * pows[i]);
+}
+
+auto calc(ll b, vector<ll> v) {
+ for (ll i = 1; b > 0; i++) {
+ if (b & 1) v = pows[i] * v;
+ b /= 2;
+ }
+ return v;
+}
diff --git a/content/math/millerRabin.cpp b/content/math/millerRabin.cpp
new file mode 100644
index 0000000..cb27d29
--- /dev/null
+++ b/content/math/millerRabin.cpp
@@ -0,0 +1,19 @@
+constexpr ll bases32[] = {2, 7, 61};
+constexpr ll bases64[] = {2, 325, 9375, 28178, 450775,
+ 9780504, 1795265022};
+bool isPrime(ll n) {
+ if (n < 2 || n % 2 == 0) return n == 2;
+ ll d = n - 1, j = 0;
+ while (d % 2 == 0) d /= 2, j++;
+ for (ll a : bases64) {
+ if (a % n == 0) continue;
+ ll v = powMod(a, d, n); //with mulmod or int128
+ if (v == 1 || v == n - 1) continue;
+ for (ll i = 1; i <= j; i++) {
+ v = ((lll)v * v) % n;
+ if (v == n - 1 || v <= 1) break;
+ }
+ if (v != n - 1) return false;
+ }
+ return true;
+}
diff --git a/content/math/modExp.cpp b/content/math/modExp.cpp
new file mode 100644
index 0000000..2329a94
--- /dev/null
+++ b/content/math/modExp.cpp
@@ -0,0 +1,6 @@
+ll powMod(ll a, ll b, ll n) {
+ if(b == 0) return 1;
+ if(b == 1) return a % n;
+ if(b & 1) return (powMod(a, b - 1, n) * a) % n;
+ else return powMod((a * a) % n, b / 2, n);
+}
diff --git a/content/math/modMulIterativ.cpp b/content/math/modMulIterativ.cpp
new file mode 100644
index 0000000..611f09a
--- /dev/null
+++ b/content/math/modMulIterativ.cpp
@@ -0,0 +1,9 @@
+ll mulMod(ll a, ll b, ll n) {
+ ll res = 0;
+ while (b > 0) {
+ if (b & 1) res = (a + res) % n;
+ a = (a * 2) % n;
+ b /= 2;
+ }
+ return res;
+}
diff --git a/content/math/modPowIterativ.cpp b/content/math/modPowIterativ.cpp
new file mode 100644
index 0000000..0dc3fb1
--- /dev/null
+++ b/content/math/modPowIterativ.cpp
@@ -0,0 +1,9 @@
+ll powMod(ll a, ll b, ll n) {
+ ll res = 1;
+ while (b > 0) {
+ if (b & 1) res = (a * res) % n;
+ a = (a * a) % n;
+ b /= 2;
+ }
+ return res;
+}
diff --git a/content/math/multInv.cpp b/content/math/multInv.cpp
new file mode 100644
index 0000000..647dc2d
--- /dev/null
+++ b/content/math/multInv.cpp
@@ -0,0 +1,4 @@
+ll multInv(ll x, ll m) {
+ auto [d, a, b] = extendedEuclid(x, m); // Implementierung von oben.
+ return ((a % m) + m) % m;
+}
diff --git a/content/math/permIndex.cpp b/content/math/permIndex.cpp
new file mode 100644
index 0000000..4cffc12
--- /dev/null
+++ b/content/math/permIndex.cpp
@@ -0,0 +1,13 @@
+ll permIndex(vector<ll> v) {
+ Tree<ll> t;
+ reverse(all(v));
+ for (ll& x : v) {
+ t.insert(x);
+ x = t.order_of_key(x);
+ }
+ ll res = 0;
+ for (int i = sz(v); i > 0; i--) {
+ res = res * i + v[i - 1];
+ }
+ return res;
+}
diff --git a/content/math/piLegendre.cpp b/content/math/piLegendre.cpp
new file mode 100644
index 0000000..21b974b
--- /dev/null
+++ b/content/math/piLegendre.cpp
@@ -0,0 +1,23 @@
+constexpr ll cache = 500; // requires O(cache^3)
+vector<vector<ll>> memo(cache * cache, vector<ll>(cache));
+
+ll pi(ll n);
+
+ll phi(ll n, ll k) {
+ if (n <= 1 || k < 0) return 0;
+ if (n <= primes[k]) return n - 1;
+ if (n < N && primes[k] * primes[k] > n) return n - pi(n) + k;
+ bool ok = n < cache * cache;
+ if (ok && memo[n][k] > 0) return memo[n][k];
+ ll res = n/primes[k] - phi(n/primes[k], k - 1) + phi(n, k - 1);
+ if (ok) memo[n][k] = res;
+ return res;
+}
+
+ll pi(ll n) {
+ if (n < N) { // implement this as O(1) lookup for speedup!
+ return distance(primes.begin(), upper_bound(all(primes), n));
+ } else {
+ ll k = pi(sqrtl(n) + 1);
+ return n - phi(n, k) + k;
+}}
diff --git a/content/math/piLehmer.cpp b/content/math/piLehmer.cpp
new file mode 100644
index 0000000..17df85e
--- /dev/null
+++ b/content/math/piLehmer.cpp
@@ -0,0 +1,52 @@
+constexpr ll cacheA = 2 * 3 * 5 * 7 * 11 * 13 * 17;
+constexpr ll cacheB = 7;
+ll memoA[cacheA + 1][cacheB + 1];
+ll memoB[cacheB + 1];
+ll memoC[N];
+
+void init() {
+ primeSieve(); // @\sourceref{math/primeSieve.cpp}@
+ for (ll i = 0; i < N; i++) {
+ memoC[i] = memoC[i - 1];
+ if (isPrime(i)) memoC[i]++;
+ }
+ memoB[0] = 1;
+ for(ll i = 0; i <= cacheA; i++) memoA[i][0] = i;
+ for(ll i = 1; i <= cacheB; i++) {
+ memoB[i] = primes[i - 1] * memoB[i - 1];
+ for(ll j = 1; j <= cacheA; j++) {
+ memoA[j][i] = memoA[j][i - 1] - memoA[j /
+ primes[i - 1]][i - 1];
+}}}
+
+ll phi(ll n, ll k) {
+ if(k == 0) return n;
+ if(k <= cacheB)
+ return memoA[n % memoB[k]][k] +
+ (n / memoB[k]) * memoA[memoB[k]][k];
+ if(n <= primes[k - 1]*primes[k - 1]) return memoC[n] - k + 1;
+ if(n <= primes[k - 1]*primes[k - 1]*primes[k - 1] && n < N) {
+ ll b = memoC[(ll)sqrtl(n)];
+ ll res = memoC[n] - (b + k - 2) * (b - k + 1) / 2;
+ for(ll i = k; i < b; i++) res += memoC[n / primes[i]];
+ return res;
+ }
+ return phi(n, k - 1) - phi(n / primes[k - 1], k - 1);
+}
+
+ll pi(ll n) {
+ if (n < N) return memoC[n];
+ ll a = pi(sqrtl(sqrtl(n)));
+ ll b = pi(sqrtl(n));
+ ll c = pi(cbrtl(n));
+ ll res = phi(n, a) + (b + a - 2) * (b - a + 1) / 2;
+ for (ll i = a; i < b; i++) {
+ ll w = n / primes[i];
+ res -= pi(w);
+ if (i > c) continue;
+ ll bi = pi(sqrtl(w));
+ for (ll j = i; j < bi; j++) {
+ res -= pi(w / primes[j]) - j;
+ }}
+ return res;
+}
diff --git a/content/math/polynomial.cpp b/content/math/polynomial.cpp
new file mode 100644
index 0000000..44f6207
--- /dev/null
+++ b/content/math/polynomial.cpp
@@ -0,0 +1,65 @@
+struct poly {
+ vector<ll> data;
+
+ poly(int deg = 0) : data(max(1, deg)) {}
+ poly(initializer_list<ll> _data) : data(_data) {}
+
+ int size() const {return sz(data);}
+
+ void trim() {
+ for (ll& x : data) x = (x % mod + mod) % mod;
+ while (size() > 1 && data.back() == 0) data.pop_back();
+ }
+
+ ll& operator[](int x) {return data[x];}
+ const ll& operator[](int x) const {return data[x];}
+
+ ll operator()(int x) const {
+ ll res = 0;
+ for (int i = size() - 1; i >= 0; i--)
+ res = (res * x + data[i]) % mod;
+ return res % mod;
+ }
+
+ poly& operator+=(const poly& o) {
+ if (size() < o.size()) data.resize(o.size());
+ for (int i = 0; i < o.size(); i++)
+ data[i] = (data[i] + o[i]) % mod;
+ return *this;
+ }
+
+ poly operator*(const poly& o) const {
+ poly res(size() + o.size() - 1);
+ for (int i = 0; i < size(); i++) {
+ for (int j = 0; j < o.size(); j++) {
+ res[i + j] += (data[i] * o[j]) % mod;
+ }}
+ res.trim();
+ return res;
+ }
+
+ //return p(x+a)
+ poly operator<<(ll a) const {
+ poly res(size());
+ for (int i = size() - 1; i >= 0; i--) {
+ for (int j = size() - i - 1; j >= 1; j--)
+ res[j] = (res[j] * a + res[j - 1]) % mod;
+ res[0] = (res[0] * a + res[i]) % mod;
+ }
+ return res;
+ }
+
+ pair<poly, poly> divmod(const poly& d) const {
+ int i = size() - d.size();
+ poly s(i + 1), r = *this;
+ ll inv = multInv(d.data.back(), mod);
+ for (; i >= 0; i--) {
+ s[i] = (r.data.back() * inv) % mod;
+ r.data.pop_back();
+ for (int j = 0; i + j < r.size(); j++) {
+ r[i + j] = (r.data[i + j] - s[i] * d[j]) % mod;
+ }}
+ s.trim(); r.trim();
+ return {s, r};
+ }
+};
diff --git a/content/math/primeSieve.cpp b/content/math/primeSieve.cpp
new file mode 100644
index 0000000..1b0f514
--- /dev/null
+++ b/content/math/primeSieve.cpp
@@ -0,0 +1,16 @@
+constexpr ll N = 100'000'000;
+bitset<N / 2> isNotPrime;
+vector<ll> primes = {2};
+
+bool isPrime(ll x) {
+ if (x < 2 || x % 2 == 0) return x == 2;
+ else return !isNotPrime[x / 2];
+}
+
+void primeSieve() {
+ for (ll i = 3; i < N; i += 2) {// i * i < N reicht für isPrime
+ if (!isNotPrime[i / 2]) {
+ primes.push_back(i); // optional
+ for (ll j = i * i; j < N; j+= 2 * i) {
+ isNotPrime[j / 2] = 1;
+}}}}
diff --git a/content/math/primitiveRoot.cpp b/content/math/primitiveRoot.cpp
new file mode 100644
index 0000000..39a0f64
--- /dev/null
+++ b/content/math/primitiveRoot.cpp
@@ -0,0 +1,23 @@
+bool isPrimitive(ll g, ll n, ll phi, map<ll, int>& phiFacts) {
+ if (g == 1) return n == 2;
+ if (gcd(g, n) > 1) return false;
+ for (auto [f, _] : phiFacts)
+ if (powMod(g, phi / f, n) == 1) return false;
+ return true;
+}
+
+bool isPrimitive(ll g, ll n) {
+ ll phin = phi(n); //isPrime(n) => phi(n) = n - 1
+ map<ll, int> phiFacts;
+ factor(phin, phiFacts);
+ return isPrimitive(g, n, phin, phiFacts);
+}
+
+ll findPrimitive(ll n) { //test auf existens geht schneller
+ ll phin = phi(n); //isPrime(n) => phi(n) = n - 1
+ map<ll, int> phiFacts;
+ factor(phin, phiFacts);
+ for (ll res = 1; res < n; res++) // oder zufällige Reihenfolge
+ if (isPrimitive(res, n, phin, phiFacts)) return res;
+ return -1;
+}
diff --git a/content/math/rho.cpp b/content/math/rho.cpp
new file mode 100644
index 0000000..ad640cd
--- /dev/null
+++ b/content/math/rho.cpp
@@ -0,0 +1,19 @@
+using lll = __int128;
+ll rho(ll n) { // Findet Faktor < n, nicht unbedingt prim.
+ if (n % 2 == 0) return 2;
+ ll x = 0, y = 0, prd = 2, i = n/2 + 7;
+ auto f = [&](lll c){return (c * c + i) % n;};
+ for (ll t = 30; t % 40 || gcd(prd, n) == 1; t++) {
+ if (x == y) x = ++i, y = f(x);
+ if (ll q = (lll)prd * abs(x-y) % n; q) prd = q;
+ x = f(x); y = f(f(y));
+ }
+ return gcd(prd, n);
+}
+
+void factor(ll n, map<ll, int>& facts) {
+ if (n == 1) return;
+ if (isPrime(n)) {facts[n]++; return;}
+ ll f = rho(n);
+ factor(n / f, facts); factor(f, facts);
+}
diff --git a/content/math/shortModInv.cpp b/content/math/shortModInv.cpp
new file mode 100644
index 0000000..f696cce
--- /dev/null
+++ b/content/math/shortModInv.cpp
@@ -0,0 +1,3 @@
+ll multInv(ll x, ll m) { // x^{-1} mod m
+ return 1 < x ? m - multInv(m % x, x) * m / x : 1;
+}
diff --git a/content/math/simpson.cpp b/content/math/simpson.cpp
new file mode 100644
index 0000000..7f237a4
--- /dev/null
+++ b/content/math/simpson.cpp
@@ -0,0 +1,12 @@
+//double f(double x) {return x;}
+
+double simps(double a, double b) {
+ return (f(a) + 4.0 * f((a + b) / 2.0) + f(b)) * (b - a) / 6.0;
+}
+
+double integrate(double a, double b) {
+ double m = (a + b) / 2.0;
+ double l = simps(a, m), r = simps(m, b), tot = simps(a, b);
+ if (abs(l + r - tot) < EPS) return tot;
+ return integrate(a, m) + integrate(m, b);
+}
diff --git a/content/math/sqrtModCipolla.cpp b/content/math/sqrtModCipolla.cpp
new file mode 100644
index 0000000..1fac0c5
--- /dev/null
+++ b/content/math/sqrtModCipolla.cpp
@@ -0,0 +1,14 @@
+ll sqrtMod(ll a, ll p) {// teste mit legendre ob lösung existiert
+ if (a < 2) return a;
+ ll t = 0;
+ while (legendre((t*t-4*a) % p, p) >= 0) t = rng() % p;
+ ll b = -t, c = -t, d = 1, m = p;
+ for (m++; m /= 2; b = (a+a-b*b) % p, a = (a*a) % p) {
+ if (m % 2) {
+ d = (c-d*b) % p;
+ c = (c*a) % p;
+ } else {
+ c = (d*a - c*b) % p;
+ }}
+ return (d + p) % p;
+}
diff --git a/content/math/squfof.cpp b/content/math/squfof.cpp
new file mode 100644
index 0000000..1cb97de
--- /dev/null
+++ b/content/math/squfof.cpp
@@ -0,0 +1,89 @@
+using lll = __int128;
+
+constexpr lll multipliers[] = {1, 3, 5, 7,
+ 11, 3*5, 3*7, 3*11,
+ 5*7, 5*11, 7*11,
+ 3*5*7, 3*5*11, 3*7*11,
+ 5*7*11, 3*5*7*11};
+
+lll root(lll x) {
+ lll r = sqrtl(x);
+ while(r*r < x) r++;
+ while(r*r > x) r--;
+ return r;
+}
+
+lll croot(lll x) {
+ lll r = cbrtl(x);
+ while(r*r*r < x) r++;
+ while(r*r*r > x) r--;
+ return r;
+}
+
+lll squfof(lll N) {
+ lll s = croot(N);
+ if (s*s*s == N) return s;
+ s = root(N);
+ if (s*s == N) return s;
+ for (lll k : multipliers) {
+ lll D = k * N;
+ lll Po, P, Pprev, q, b, r, i;
+ Po = Pprev = P = root(D);
+ lll Qprev = 1;
+ lll Q = D - Po*Po;
+ lll L = 2 * root(2 * s);
+ lll B = 3 * L;
+ for (i = 2; i < B; i++) {
+ b = (Po + P) / Q;
+ P = b*Q - P;
+ q = Q;
+ Q = Qprev + b * (Pprev - P);
+ r = root(Q);
+ if (!(i & 1) && r*r == Q) break;
+ Qprev = q;
+ Pprev = P;
+ }
+ if (i >= B) continue;
+ b = (Po - P) / r;
+ Pprev = P = b*r + P;
+ Qprev = r;
+ Q = (D-Pprev*Pprev)/Qprev;
+ i = 0;
+ do {
+ b = (Po + P) / Q;
+ Pprev = P;
+ P = b*Q - P;
+ q = Q;
+ Q = Qprev + b * (Pprev - P);
+ Qprev = q;
+ i++;
+ } while(P != Pprev);
+ r = gcd(N, Qprev);
+ if (r != 1 && r != N) return r;
+ }
+ exit(1);//try fallback to pollard rho
+}
+
+constexpr lll trialLim = 5'000;
+
+void factor(lll n, map<lll, int>& facts) {
+ for (lll i = 2; i * i <= n && i <= trialLim; i++) {
+ while (n % i == 0) {
+ facts[i]++;
+ n /= i;
+ }}
+ if (n > 1 && n < trialLim * trialLim) {
+ facts[n]++;
+ } else {
+ vector<lll> todo = {n};
+ while (!todo.empty()) {
+ lll c = todo.back();
+ todo.pop_back();
+ if (c == 1) continue;
+ if (isPrime(c)) {
+ facts[c]++;
+ } else {
+ lll d = squfof(c);
+ todo.push_back(d);
+ todo.push_back(c / d);
+}}}}
diff --git a/content/math/tables.tex b/content/math/tables.tex
new file mode 100644
index 0000000..c422d73
--- /dev/null
+++ b/content/math/tables.tex
@@ -0,0 +1,22 @@
+\enlargethispage{0.2cm}
+\begin{multicols*}{2}
+ \refstepcounter{subsection}
+ \subsectionmark{Tables}
+ \addcontentsline{toc}{subsection}{\protect\numberline{\thesubsection}Tables}
+
+ \input{math/tables/binom}
+ \vfill
+ \input{math/tables/prime-composite}
+ \vfill
+ \input{math/tables/platonic}
+ \vfill
+ \input{math/tables/series}
+
+ \columnbreak
+
+ \input{math/tables/probability}
+ \vfill
+ \input{math/tables/stuff}
+ \vfill
+ \input{math/tables/nim}
+\end{multicols*}
diff --git a/content/math/tables/binom.tex b/content/math/tables/binom.tex
new file mode 100644
index 0000000..878a6b0
--- /dev/null
+++ b/content/math/tables/binom.tex
@@ -0,0 +1,28 @@
+\begin{tabularx}{\linewidth}{|XXXX|}
+ \hline
+ \multicolumn{4}{|c|}{Binomialkoeffizienten} \\
+ \hline
+ \multicolumn{4}{|c|}{
+ $\frac{n!}{k!(n - k)!} \hfill=\hfill
+ \binom{n}{k} \hfill=\hfill
+ \binom{n}{n - k} \hfill=\hfill
+ \frac{n}{k}\binom{n - 1}{k - 1} \hfill=\hfill
+ \frac{n-k+1}{k}\binom{n}{k - 1} \hfill=\hfill
+ \binom{n - 1}{k} + \binom{n - 1}{k - 1} \hfill=\hfill
+ (-1)^k \binom{k - n - 1}{k} \hfill\approx\hfill
+ 2^{n} \cdot \frac{2}{\sqrt{2\pi n}}\cdot\exp\left(-\frac{2(x - \frac{n}{2})^2}{n}\right)$
+ } \\
+ \grayhline
+
+ $\sum\limits_{k = 0}^n \binom{n}{k} = 2^n$ &
+ $\sum\limits_{k = 0}^n \binom{k}{m} = \binom{n + 1}{m + 1}$ &
+ $\sum\limits_{i = 0}^n \binom{n}{i}^2 = \binom{2n}{n}$ &
+ $\sum\limits_{k = 0}^n\binom{r + k}{k} = \binom{r + n + 1}{n}$\\
+
+ $\binom{n}{m}\binom{m}{k} = \binom{n}{k}\binom{n - k}{m - k}$ &
+ $\sum\limits_{k = 0}^n \binom{r}{k}\binom{s}{n - k} = \binom{r + s}{n}$ &
+ \multicolumn{2}{l|}{
+ $\sum\limits_{i = 1}^n \binom{n}{i} F_i = F_{2n} \quad F_n = n\text{-th Fib.}$
+ }\\
+ \hline
+\end{tabularx}
diff --git a/content/math/tables/nim.tex b/content/math/tables/nim.tex
new file mode 100644
index 0000000..8490d42
--- /dev/null
+++ b/content/math/tables/nim.tex
@@ -0,0 +1,96 @@
+\begin{tabularx}{\linewidth}{|p{0.37\linewidth}|X|}
+ \hline
+ \multicolumn{2}{|c|}{Nim-Spiele (\ding{182} letzter gewinnt (normal), \ding{183} letzter verliert)} \\
+ \hline
+ Beschreibung &
+ Strategie \\
+ \hline
+
+ $M = [\mathit{pile}_i]$\newline
+ $[x] := \{1, \ldots, x\}$&
+ $\mathit{SG} = \oplus_{i = 1}^n \mathit{pile}_i$\newline
+ \ding{182} Nimm von einem Stapel, sodass $\mathit{SG}$ $0$ wird.\newline
+ \ding{183} Genauso.
+ Außer: Bleiben nur noch Stapel der Größe $1$, erzeuge ungerade Anzahl solcher Stapel.\\
+ \hline
+
+ $M = \{a^m \mid m \geq 0\}$ &
+ $a$ ungerade: $\mathit{SG}_n = n \% 2$\newline
+ $a$ gerade:\newline
+ $\mathit{SG}_n = 2$, falls $n \equiv a \bmod (a + 1) $\newline
+ $\mathit{SG}_n = n \% (a + 1) \% 2$, sonst.\\
+ \hline
+
+ $M_{\text{\ding{172}}} = \left[\frac{\mathit{pile}_i}{2}\right]$\newline
+ $M_{\text{\ding{173}}} =
+ \left\{\left\lceil\frac{\mathit{pile}_i}{2}\right\rceil,~
+ \mathit{pile}_i\right\}$ &
+ \ding{172}
+ $\mathit{SG}_{2n} = n$,
+ $\mathit{SG}_{2n+1} = \mathit{SG}_n$\newline
+ \ding{173}
+ $\mathit{SG}_0 = 0$,
+ $\mathit{SG}_n = [\log_2 n] + 1$ \\
+ \hline
+
+ $M_{\text{\ding{172}}} = \text{Teiler von $\mathit{pile}_i$}$\newline
+ $M_{\text{\ding{173}}} = \text{echte Teiler von $\mathit{pile}_i$}$ &
+ \ding{172}
+ $\mathit{SG}_0 = 0$,
+ $\mathit{SG}_n = \mathit{SG}_{\text{\ding{173},n}} + 1$\newline
+ \ding{173}
+ $\mathit{ST}_1 = 0$,
+ $\mathit{SG}_n = \text{\#Nullen am Ende von $n_{bin}$}$\\
+ \hline
+
+ $M_{\text{\ding{172}}} = [k]$\newline
+ $M_{\text{\ding{173}}} = S$, ($S$ endlich)\newline
+ $M_{\text{\ding{174}}} = S \cup \{\mathit{pile}_i\}$ &
+ $\mathit{SG}_{\text{\ding{172}}, n} = n \bmod (k + 1)$\newline
+ \ding{182} Niederlage bei $\mathit{SG} = 0$\newline
+ \ding{183} Niederlage bei $\mathit{SG} = 1$\newline
+ $\mathit{SG}_{\text{\ding{174}}, n} = \mathit{SG}_{\text{\ding{173}}, n} + 1$\\
+ \hline
+
+ \multicolumn{2}{|l|}{
+ Für jedes endliche $M$ ist $\mathit{SG}$ eines Stapels irgendwann periodisch.
+ } \\
+ \hline
+
+ \textsc{Moore}'s Nim:\newline
+ Beliebige Zahl von maximal $k$ Stapeln. &
+ \ding{182}
+ Schreibe $\mathit{pile}_i$ binär.
+ Addiere ohne Übertrag zur Basis $k + 1$.
+ Niederlage, falls Ergebnis gleich 0.\newline
+ \ding{183}
+ Wenn alle Stapel $1$ sind:
+ Niederlage, wenn $n \equiv 1 \bmod (k + 1)$.
+ Sonst wie in \ding{182}.\\
+ \hline
+
+ Staircase Nim:\newline
+ $n$ Stapel in einer Reihe.
+ Beliebige Zahl von Stapel $i$ nach Stapel $i-1$. &
+ Niederlage, wenn Nim der ungeraden Spiele verloren ist:\newline
+ $\oplus_{i = 0}^{(n - 1) / 2} \mathit{pile}_{2i + 1} = 0$\\
+ \hline
+
+ \textsc{Lasker}'s Nim:\newline
+ Zwei mögliche Züge:\newline
+ 1) Nehme beliebige Zahl.\newline
+ 2) Teile Stapel in zwei Stapel (ohne Entnahme).&
+ $\mathit{SG}_n = n$, falls $n \equiv 1,2 \bmod 4$\newline
+ $\mathit{SG}_n = n + 1$, falls $n \equiv 3 \bmod 4$\newline
+ $\mathit{SG}_n = n - 1$, falls $n \equiv 0 \bmod 4$\\
+ \hline
+
+ \textsc{Kayles}' Nim:\newline
+ Zwei mögliche Züge:\newline
+ 1) Nehme beliebige Zahl.\newline
+ 2) Teile Stapel in zwei Stapel (mit Entnahme).&
+ Berechne $\mathit{SG}_n$ für kleine $n$ rekursiv.\newline
+ $n \in [72,83]: \quad 4, 1, 2, 8, 1, 4, 7, 2, 1, 8, 2, 7$\newline
+ Periode ab $n = 72$ der Länge $12$.\\
+ \hline
+\end{tabularx}
diff --git a/content/math/tables/numbers.tex b/content/math/tables/numbers.tex
new file mode 100644
index 0000000..1dc9f38
--- /dev/null
+++ b/content/math/tables/numbers.tex
@@ -0,0 +1,59 @@
+\begin{expandtable}
+\begin{tabularx}{\linewidth}{|l|X|}
+ \hline
+ \multicolumn{2}{|c|}{Berühmte Zahlen} \\
+ \hline
+ \textsc{Fibonacci} &
+ $f(0) = 0 \quad
+ f(1) = 1 \quad
+ f(n+2) = f(n+1) + f(n)$ \\
+ \grayhline
+
+ \textsc{Catalan} &
+ $C_0 = 1 \qquad
+ C_n = \sum\limits_{k = 0}^{n - 1} C_kC_{n - 1 - k} =
+ \frac{1}{n + 1}\binom{2n}{n} = \frac{2(2n - 1)}{n+1} \cdot C_{n-1}$ \\
+ \grayhline
+
+ \textsc{Euler} I &
+ $\eulerI{n}{0} = \eulerI{n}{n-1} = 1 \qquad
+ \eulerI{n}{k} = (k+1) \eulerI{n-1}{k} + (n-k) \eulerI{n-1}{k-1} $ \\
+ \grayhline
+
+ \textsc{Euler} II &
+ $\eulerII{n}{0} = 1 \quad
+ \eulerII{n}{n} = 0 \quad$\\
+ & $\eulerII{n}{k} = (k+1) \eulerII{n-1}{k} + (2n-k-1) \eulerII{n-1}{k-1}$ \\
+ \grayhline
+
+ \textsc{Stirling} I &
+ $\stirlingI{0}{0} = 1 \qquad
+ \stirlingI{n}{0} = \stirlingI{0}{n} = 0 \qquad
+ \stirlingI{n}{k} = \stirlingI{n-1}{k-1} + (n-1) \stirlingI{n-1}{k}$ \\
+ \grayhline
+
+ \textsc{Stirling} II &
+ $\stirlingII{n}{1} = \stirlingII{n}{n} = 1 \qquad
+ \stirlingII{n}{k} = k \stirlingII{n-1}{k} + \stirlingII{n-1}{k-1} =
+ \frac{1}{k!} \sum\limits_{j=0}^{k} (-1)^{k-j}\binom{k}{j}j^n$\\
+ \grayhline
+
+ \textsc{Bell} &
+ $B_1 = 1 \qquad
+ B_n = \sum\limits_{k = 0}^{n - 1} B_k\binom{n-1}{k}
+ = \sum\limits_{k = 0}^{n}\stirlingII{n}{k}$\\
+ \grayhline
+
+ \textsc{Partitions} &
+ $p(0,0) = 1 \quad
+ p(n,k) = 0 \text{ für } k > n \text{ oder } n \leq 0 \text{ oder } k \leq 0$ \\
+ & $p(n,k) = p(n-k,k) + p(n-1,k-1)$\\
+ \grayhline
+
+ \textsc{Partitions} &
+ $f(0) = 1 \quad f(n) = 0~(n < 0)$ \\
+ & $f(n)=\sum\limits_{k=1}^\infty(-1)^{k-1}f(n - \frac{k(3k+1)}{2})+\sum\limits_{k=1}^\infty(-1)^{k-1}f(n - \frac{k(3k-1)}{2})$\\
+
+ \hline
+\end{tabularx}
+\end{expandtable}
diff --git a/content/math/tables/platonic.tex b/content/math/tables/platonic.tex
new file mode 100644
index 0000000..f4ee554
--- /dev/null
+++ b/content/math/tables/platonic.tex
@@ -0,0 +1,39 @@
+\begin{tabularx}{\linewidth}{|X|CCCX|}
+ \hline
+ \multicolumn{5}{|c|}{Platonische Körper} \\
+ \hline
+ Übersicht & Seiten & Ecken & Kanten & dual zu \\
+ \hline
+ Tetraeder & 4 & 4 & 6 & Tetraeder \\
+ Würfel/Hexaeder & 6 & 8 & 12 & Oktaeder \\
+ Oktaeder & 8 & 6 & 12 & Würfel/Hexaeder\\
+ Dodekaeder & 12 & 20 & 30 & Ikosaeder \\
+ Ikosaeder & 20 & 12 & 30 & Dodekaeder \\
+ \hline
+ \multicolumn{5}{|c|}{Färbungen mit maximal $n$ Farben (bis auf Isomorphie)} \\
+ \hline
+ \multicolumn{3}{|l}{Ecken vom Oktaeder/Seiten vom Würfel} &
+ \multicolumn{2}{l|}{$(n^6 + 3n^4 + 12n^3 + 8n^2)/24$} \\
+
+ \multicolumn{3}{|l}{Ecken vom Würfel/Seiten vom Oktaeder} &
+ \multicolumn{2}{l|}{$(n^8 + 17n^4 + 6n^2)/24$} \\
+
+ \multicolumn{3}{|l}{Kanten vom Würfel/Oktaeder} &
+ \multicolumn{2}{l|}{$(n^{12} + 6n^7 + 3n^6 + 8n^4 + 6n^3)/24$} \\
+
+ \multicolumn{3}{|l}{Ecken/Seiten vom Tetraeder} &
+ \multicolumn{2}{l|}{$(n^4 + 11n^2)/12$} \\
+
+ \multicolumn{3}{|l}{Kanten vom Tetraeder} &
+ \multicolumn{2}{l|}{$(n^6 + 3n^4 + 8n^2)/12$} \\
+
+ \multicolumn{3}{|l}{Ecken vom Ikosaeder/Seiten vom Dodekaeder} &
+ \multicolumn{2}{l|}{$(n^{12} + 15n^6 + 44n^4)/60$} \\
+
+ \multicolumn{3}{|l}{Ecken vom Dodekaeder/Seiten vom Ikosaeder} &
+ \multicolumn{2}{l|}{$(n^{20} + 15n^{10} + 20n^8 + 24n^4)/60$} \\
+
+ \multicolumn{3}{|l}{Kanten vom Dodekaeder/Ikosaeder (evtl. falsch)} &
+ \multicolumn{2}{l|}{$(n^{30} + 15n^{16} + 20n^{10} + 24n^6)/60$} \\
+ \hline
+\end{tabularx}
diff --git a/content/math/tables/prime-composite.tex b/content/math/tables/prime-composite.tex
new file mode 100644
index 0000000..99b3348
--- /dev/null
+++ b/content/math/tables/prime-composite.tex
@@ -0,0 +1,26 @@
+\begin{tabularx}{\linewidth}{|r|r|rIr|rIrIr|C|}
+ \hline
+ \multicolumn{8}{|c|}{Important Numbers} \\
+ \hline
+ $10^x$ & Highly Composite & \# Divs & $<$ Prime & $>$ Prime & \# Primes & primorial & \\
+ \hline
+ 1 & 6 & 4 & $-3$ & $+1$ & 4 & 2 & \\
+ 2 & 60 & 12 & $-3$ & $+1$ & 25 & 3 & \\
+ 3 & 840 & 32 & $-3$ & $+9$ & 168 & 4 & \\
+ 4 & 7\,560 & 64 & $-27$ & $+7$ & 1\,229 & 5 & \\
+ 5 & 83\,160 & 128 & $-9$ & $+3$ & 9\,592 & 6 & \\
+ 6 & 720\,720 & 240 & $-17$ & $+3$ & 78\,498 & 7 & \\
+ 7 & 8\,648\,640 & 448 & $-9$ & $+19$ & 664\,579 & 8 & \\
+ 8 & 73\,513\,440 & 768 & $-11$ & $+7$ & 5\,761\,455 & 8 & \\
+ 9 & 735\,134\,400 & 1\,344 & $-63$ & $+7$ & 50\,847\,534 & 9 & \\
+ 10 & 6\,983\,776\,800 & 2\,304 & $-33$ & $+19$ & 455\,052\,511 & 10 & \\
+ 11 & 97\,772\,875\,200 & 4\,032 & $-23$ & $+3$ & 4\,118\,054\,813 & 10 & \\
+ 12 & 963\,761\,198\,400 & 6\,720 & $-11$ & $+39$ & 37\,607\,912\,018 & 11 & \\
+ 13 & 9\,316\,358\,251\,200 & 10\,752 & $-29$ & $+37$ & 346\,065\,536\,839 & 12 & \\
+ 14 & 97\,821\,761\,637\,600 & 17\,280 & $-27$ & $+31$ & 3\,204\,941\,750\,802 & 12 & \\
+ 15 & 866\,421\,317\,361\,600 & 26\,880 & $-11$ & $+37$ & 29\,844\,570\,422\,669 & 13 & \\
+ 16 & 8\,086\,598\,962\,041\,600 & 41\,472 & $-63$ & $+61$ & 279\,238\,341\,033\,925 & 13 & \\
+ 17 & 74\,801\,040\,398\,884\,800 & 64\,512 & $-3$ & $+3$ & 2\,623\,557\,157\,654\,233 & 14 & \\
+ 18 & 897\,612\,484\,786\,617\,600 & 103\,680 & $-11$ & $+3$ & 24\,739\,954\,287\,740\,860 & 16 & \\
+ \hline
+\end{tabularx}
diff --git a/content/math/tables/probability.tex b/content/math/tables/probability.tex
new file mode 100644
index 0000000..f265d10
--- /dev/null
+++ b/content/math/tables/probability.tex
@@ -0,0 +1,27 @@
+\begin{tabularx}{\linewidth}{|LICIR|}
+ \hline
+ \multicolumn{3}{|c|}{
+ Wahrscheinlichkeitstheorie ($A,B$ Ereignisse und $X,Y$ Variablen)
+ } \\
+ \hline
+ $\E(X + Y) = \E(X) + \E(Y)$ &
+ $\E(\alpha X) = \alpha \E(X)$ &
+ $X, Y$ unabh. $\Leftrightarrow \E(XY) = \E(X) \cdot \E(Y)$\\
+
+ $\Pr[A \vert B] = \frac{\Pr[A \land B]}{\Pr[B]}$ &
+ $A, B$ disj. $\Leftrightarrow \Pr[A \land B] = \Pr[A] \cdot \Pr[B]$ &
+ $\Pr[A \lor B] = \Pr[A] + \Pr[B] - \Pr[A \land B]$ \\
+ \hline
+\end{tabularx}
+\vfill
+\begin{tabularx}{\linewidth}{|Xlr|lrX|}
+ \hline
+ \multicolumn{6}{|c|}{\textsc{Bertrand}'s Ballot Theorem (Kandidaten $A$ und $B$, $k \in \mathbb{N}$)} \\
+ \hline
+ & $\#A > k\#B$ & $Pr = \frac{a - kb}{a + b}$ &
+ $\#B - \#A \leq k$ & $Pr = 1 - \frac{a!b!}{(a + k + 1)!(b - k - 1)!}$ & \\
+
+ & $\#A \geq k\#B$ & $Pr = \frac{a + 1 - kb}{a + 1}$ &
+ $\#A \geq \#B + k$ & $Num = \frac{a - k + 1 - b}{a - k + 1} \binom{a + b - k}{b}$ & \\
+ \hline
+\end{tabularx}
diff --git a/content/math/tables/series.tex b/content/math/tables/series.tex
new file mode 100644
index 0000000..3042781
--- /dev/null
+++ b/content/math/tables/series.tex
@@ -0,0 +1,33 @@
+\begin{tabularx}{\linewidth}{|XIXIXIX|}
+ \hline
+ \multicolumn{4}{|c|}{Reihen} \\
+ \hline
+ $\sum\limits_{i = 1}^n i = \frac{n(n+1)}{2}$ &
+ $\sum\limits_{i = 1}^n i^2 = \frac{n(n + 1)(2n + 1)}{6}$ &
+ $\sum\limits_{i = 1}^n i^3 = \frac{n^2 (n + 1)^2}{4}$ &
+ $H_n = \sum\limits_{i = 1}^n \frac{1}{i}$ \\
+ \grayhline
+
+ $\sum\limits_{i = 0}^n c^i = \frac{c^{n + 1} - 1}{c - 1} \quad c \neq 1$ &
+ $\sum\limits_{i = 0}^\infty c^i = \frac{1}{1 - c} \quad \vert c \vert < 1$ &
+ $\sum\limits_{i = 1}^\infty c^i = \frac{c}{1 - c} \quad \vert c \vert < 1$ &
+ $\sum\limits_{i = 0}^\infty ic^i = \frac{c}{(1 - c)^2} \quad \vert c \vert < 1$ \\
+ \grayhline
+
+ \multicolumn{2}{|lI}{
+ $\sum\limits_{i = 0}^n ic^i = \frac{nc^{n + 2} - (n + 1)c^{n + 1} + c}{(c - 1)^2} \quad c \neq 1$
+ } &
+ \multicolumn{2}{l|}{
+ $\sum\limits_{i = 1}^n iH_i = \frac{n(n + 1)}{2}H_n - \frac{n(n - 1)}{4}$
+ } \\
+ \grayhline
+
+ \multicolumn{2}{|lI}{
+ $\sum\limits_{i = 1}^n H_i = (n + 1)H_n - n$
+ } &
+ \multicolumn{2}{l|}{
+ $\sum\limits_{i = 1}^n \binom{i}{m}H_i =
+ \binom{n + 1}{m + 1} \left(H_{n + 1} - \frac{1}{m + 1}\right)$
+ } \\
+ \hline
+\end{tabularx}
diff --git a/content/math/tables/stuff.tex b/content/math/tables/stuff.tex
new file mode 100644
index 0000000..3cf8b4c
--- /dev/null
+++ b/content/math/tables/stuff.tex
@@ -0,0 +1,32 @@
+\begin{tabularx}{\linewidth}{|ll|}
+ \hline
+ \multicolumn{2}{|C|}{Verschiedenes} \\
+ \hline
+ Türme von Hanoi, minimale Schirttzahl: &
+ $T_n = 2^n - 1$ \\
+
+ \#Regionen zwischen $n$ Geraden &
+ $\frac{n\left(n + 1\right)}{2} + 1$ \\
+
+ \#abgeschlossene Regionen zwischen $n$ Geraden &
+ $\frac{n^2 - 3n + 2}{2}$ \\
+
+ \#markierte, gewurzelte Bäume &
+ $n^{n-1}$ \\
+
+ \#markierte, nicht gewurzelte Bäume &
+ $n^{n-2}$ \\
+
+ \#Wälder mit $k$ gewurzelten Bäumen &
+ $\frac{k}{n}\binom{n}{k}n^{n-k}$ \\
+
+ \#Wälder mit $k$ gewurzelten Bäumen mit vorgegebenen Wurzelknoten&
+ $\frac{k}{n}n^{n-k}$ \\
+
+ Derangements &
+ $!n = (n - 1)(!(n - 1) + !(n - 2)) = \left\lfloor\frac{n!}{e} + \frac{1}{2}\right\rfloor$ \\
+ &
+ $\lim\limits_{n \to \infty} \frac{!n}{n!} = \frac{1}{e}$ \\
+ \hline
+\end{tabularx}
+
diff --git a/content/math/tables/twelvefold.tex b/content/math/tables/twelvefold.tex
new file mode 100644
index 0000000..18d3955
--- /dev/null
+++ b/content/math/tables/twelvefold.tex
@@ -0,0 +1,32 @@
+\begin{expandtable}
+\begin{tabularx}{\linewidth}{|C|CICICIC|}
+ \hline
+ Bälle & identisch & verschieden & identisch & verschieden \\
+ Boxen & identisch & identisch & verschieden & verschieden \\
+ \hline
+ -- &
+ $p_k(n + k)$ &
+ $\sum\limits_{i = 0}^k \stirlingII{n}{i}$ &
+ $\binom{n + k - 1}{k - 1}$ &
+ $k^n$ \\
+ \grayhline
+
+ \makecell{Bälle pro\\Box $\geq 1$} &
+ $p_k(n)$ &
+ $\stirlingII{n}{k}$ &
+ $\binom{n - 1}{k - 1}$ &
+ $k! \stirlingII{n}{k}$ \\
+ \grayhline
+
+ \makecell{Bälle pro\\Box $\leq 1$} &
+ $[n \leq k]$ &
+ $[n \leq k]$ &
+ $\binom{k}{n}$ &
+ $n! \binom{k}{n}$ \\
+ \hline
+ \multicolumn{5}{|l|}{
+ $[\text{Bedingung}]$: \code{return Bedingung ? 1 : 0;}
+ } \\
+ \hline
+\end{tabularx}
+\end{expandtable}
diff --git a/content/math/transforms/andTransform.cpp b/content/math/transforms/andTransform.cpp
new file mode 100644
index 0000000..1fd9f5c
--- /dev/null
+++ b/content/math/transforms/andTransform.cpp
@@ -0,0 +1,8 @@
+void fft(vector<ll>& a, bool inv = false) {
+ int n = sz(a);
+ for (int s = 1; s < n; s *= 2) {
+ for (int i = 0; i < n; i += 2 * s) {
+ for (int j = i; j < i + s; j++) {
+ ll& u = a[j], &v = a[j + s];
+ tie(u, v) = inv ? pair(v - u, u) : pair(v, u + v);
+}}}}
diff --git a/content/math/transforms/bitwiseTransforms.cpp b/content/math/transforms/bitwiseTransforms.cpp
new file mode 100644
index 0000000..28561da
--- /dev/null
+++ b/content/math/transforms/bitwiseTransforms.cpp
@@ -0,0 +1,12 @@
+void bitwiseConv(vector<ll>& a, bool inv = false) {
+ int n = sz(a);
+ for (int s = 1; s < n; s *= 2) {
+ for (int i = 0; i < n; i += 2 * s) {
+ for (int j = i; j < i + s; j++) {
+ ll& u = a[j], &v = a[j + s];
+ tie(u, v) = inv ? pair(v - u, u) : pair(v, u + v); // AND
+ //tie(u, v) = inv ? pair(v, u - v) : pair(u + v, u); //OR
+ //tie(u, v) = pair(u + v, u - v); // XOR
+ }}}
+ //if (inv) for (ll& x : a) x /= n; // XOR (careful with MOD)
+}
diff --git a/content/math/transforms/fft.cpp b/content/math/transforms/fft.cpp
new file mode 100644
index 0000000..2bd95b2
--- /dev/null
+++ b/content/math/transforms/fft.cpp
@@ -0,0 +1,23 @@
+using cplx = complex<double>;
+
+void fft(vector<cplx>& a, bool inv = false) {
+ int n = sz(a);
+ for (int i = 0, j = 1; j < n - 1; ++j) {
+ for (int k = n >> 1; k > (i ^= k); k >>= 1);
+ if (j < i) swap(a[i], a[j]);
+ }
+ static vector<cplx> ws(2, 1);
+ for (static int k = 2; k < n; k *= 2) {
+ ws.resize(n);
+ cplx w = polar(1.0, acos(-1.0) / k);
+ for (int i=k; i<2*k; i++) ws[i] = ws[i/2] * (i % 2 ? w : 1);
+ }
+ for (int s = 1; s < n; s *= 2) {
+ for (int j = 0; j < n; j += 2 * s) {
+ for (int k = 0; k < s; k++) {
+ cplx u = a[j + k], t = a[j + s + k];
+ t *= (inv ? conj(ws[s + k]) : ws[s + k]);
+ a[j + k] = u + t;
+ a[j + s + k] = u - t;
+ if (inv) a[j + k] /= 2, a[j + s + k] /= 2;
+}}}}
diff --git a/content/math/transforms/fftMul.cpp b/content/math/transforms/fftMul.cpp
new file mode 100644
index 0000000..660ed79
--- /dev/null
+++ b/content/math/transforms/fftMul.cpp
@@ -0,0 +1,15 @@
+vector<cplx> mul(vector<ll>& a, vector<ll>& b) {
+ int n = 1 << (__lg(sz(a) + sz(b) - 1) + 1);
+ vector<cplx> c(all(a)), d(n);
+ c.resize(n);
+ for (int i = 0; i < sz(b); i++) c[i] = {real(c[i]), b[i]};
+ fft(c);
+ for (int i = 0; i < n; i++) {
+ int j = (n - i) & (n - 1);
+ cplx x = (c[i] + conj(c[j])) / cplx{2, 0}; //fft(a)[i];
+ cplx y = (c[i] - conj(c[j])) / cplx{0, 2}; //fft(b)[i];
+ d[i] = x * y;
+ }
+ fft(d, true);
+ return d;
+}
diff --git a/content/math/transforms/multiplyBitwise.cpp b/content/math/transforms/multiplyBitwise.cpp
new file mode 100644
index 0000000..f7cf169
--- /dev/null
+++ b/content/math/transforms/multiplyBitwise.cpp
@@ -0,0 +1,8 @@
+vector<ll> mul(vector<ll> a, vector<ll> b) {
+ int n = 1 << (__lg(2 * max(sz(a), sz(b)) - 1));
+ a.resize(n), b.resize(n);
+ bitwiseConv(a), bitwiseConv(b);
+ for (int i=0; i<n; i++) a[i] *= b[i]; // MOD?
+ bitwiseConv(a, true);
+ return a;
+}
diff --git a/content/math/transforms/multiplyFFT.cpp b/content/math/transforms/multiplyFFT.cpp
new file mode 100644
index 0000000..0022d1f
--- /dev/null
+++ b/content/math/transforms/multiplyFFT.cpp
@@ -0,0 +1,12 @@
+vector<ll> mul(vector<ll>& a, vector<ll>& b) {
+ int n = 1 << (__lg(sz(a) + sz(b) - 1) + 1);
+ vector<cplx> a2(all(a)), b2(all(b));
+ a2.resize(n), b2.resize(n);
+ fft(a2), fft(b2);
+ for (int i=0; i<n; i++) a2[i] *= b2[i];
+ fft(a2, true);
+
+ vector<ll> ans(n);
+ for (int i=0; i<n; i++) ans[i] = llround(a2[i].real());
+ return ans;
+}
diff --git a/content/math/transforms/multiplyNTT.cpp b/content/math/transforms/multiplyNTT.cpp
new file mode 100644
index 0000000..806d124
--- /dev/null
+++ b/content/math/transforms/multiplyNTT.cpp
@@ -0,0 +1,8 @@
+vector<ll> mul(vector<ll> a, vector<ll> b) {
+ int n = 1 << (__lg(sz(a) + sz(b) - 1) + 1);
+ a.resize(n), b.resize(n);
+ ntt(a), ntt(b);
+ for (int i=0; i<n; i++) a[i] = a[i] * b[i] % mod;
+ ntt(a, true);
+ return a;
+}
diff --git a/content/math/transforms/ntt.cpp b/content/math/transforms/ntt.cpp
new file mode 100644
index 0000000..ca605d3
--- /dev/null
+++ b/content/math/transforms/ntt.cpp
@@ -0,0 +1,23 @@
+constexpr ll mod = 998244353, root = 3;
+
+void ntt(vector<ll>& a, bool inv = false) {
+ int n = sz(a);
+ auto b = a;
+ ll r = inv ? powMod(root, mod - 2, mod) : root;
+
+ for (int s = n / 2; s > 0; s /= 2) {
+ ll ws = powMod(r, (mod - 1) / (n / s), mod), w = 1;
+ for (int j = 0; j < n / 2; j += s) {
+ for (int k = j; k < j + s; k++) {
+ ll u = a[j + k], t = a[j + s + k] * w % mod;
+ b[k] = (u + t) % mod;
+ b[n/2 + k] = (u - t + mod) % mod;
+ }
+ w = w * ws % mod;
+ }
+ swap(a, b);
+ }
+ if (inv) {
+ ll div = powMod(n, mod - 2, mod);
+ for (auto& x : a) x = x * div % mod;
+}}
diff --git a/content/math/transforms/orTransform.cpp b/content/math/transforms/orTransform.cpp
new file mode 100644
index 0000000..eb1da44
--- /dev/null
+++ b/content/math/transforms/orTransform.cpp
@@ -0,0 +1,8 @@
+void fft(vector<ll>& a, bool inv = false) {
+ int n = sz(a);
+ for (int s = 1; s < n; s *= 2) {
+ for (int i = 0; i < n; i += 2 * s) {
+ for (int j = i; j < i + s; j++) {
+ ll& u = a[j], &v = a[j + s];
+ tie(u, v) = inv ? pair(v, u - v) : pair(u + v, u);
+}}}}
diff --git a/content/math/transforms/seriesOperations.cpp b/content/math/transforms/seriesOperations.cpp
new file mode 100644
index 0000000..4743674
--- /dev/null
+++ b/content/math/transforms/seriesOperations.cpp
@@ -0,0 +1,56 @@
+vector<ll> poly_inv(const vector<ll>& a, int n) {
+ vector<ll> q = {powMod(a[0], mod-2, mod)};
+ for (int len = 1; len < n; len *= 2){
+ vector<ll> a2 = a, q2 = q;
+ a2.resize(2*len), q2.resize(2*len);
+ ntt(q2);
+ for (int j : {0, 1}) {
+ ntt(a2);
+ for (int i = 0; i < 2*len; i++) a2[i] = a2[i]*q2[i] % mod;
+ ntt(a2, true);
+ for (int i = 0; i < len; i++) a2[i] = 0;
+ }
+ for (int i = len; i < min(n, 2*len); i++) {
+ q.push_back((mod - a2[i]) % mod);
+ }}
+ return q;
+}
+
+vector<ll> poly_deriv(vector<ll> a) {
+ for (int i = 1; i < sz(a); i++)
+ a[i-1] = a[i] * i % mod;
+ a.pop_back();
+ return a;
+}
+
+vector<ll> poly_integr(vector<ll> a) {
+ if (a.empty()) return {0};
+ a.push_back(a.back() * powMod(sz(a), mod-2, mod) % mod);
+ for (int i = sz(a)-2; i > 0; i--)
+ a[i] = a[i-1] * powMod(i, mod-2, mod) % mod;
+ a[0] = 0;
+ return a;
+}
+
+vector<ll> poly_log(vector<ll> a, int n) {
+ a = mul(poly_deriv(a), poly_inv(a, n));
+ a.resize(n-1);
+ a = poly_integr(a);
+ return a;
+}
+
+vector<ll> poly_exp(vector<ll> a, int n) {
+ vector<ll> q = {1};
+ for (int len = 1; len < n; len *= 2) {
+ vector<ll> p = poly_log(q, 2*len);
+ for (int i = 0; i < 2*len; i++)
+ p[i] = (mod - p[i] + (i < sz(a) ? a[i] : 0)) % mod;
+ vector<ll> q2 = q;
+ q2.resize(2*len);
+ ntt(p), ntt(q2);
+ for (int i = 0; i < 2*len; i++) p[i] = p[i] * q2[i] % mod;
+ ntt(p, true);
+ for (int i = len; i < min(n, 2*len); i++) q.push_back(p[i]);
+ }
+ return q;
+}
diff --git a/content/math/transforms/xorTransform.cpp b/content/math/transforms/xorTransform.cpp
new file mode 100644
index 0000000..f9d1d82
--- /dev/null
+++ b/content/math/transforms/xorTransform.cpp
@@ -0,0 +1,10 @@
+void fft(vector<ll>& a, bool inv = false) {
+ int n = sz(a);
+ for (int s = 1; s < n; s *= 2) {
+ for (int i = 0; i < n; i += 2 * s) {
+ for (int j = i; j < i + s; j++) {
+ ll& u = a[j], &v = a[j + s];
+ tie(u, v) = pair(u + v, u - v);
+ }}}
+ if (inv) for (ll& x : a) x /= n;
+}