summaryrefslogtreecommitdiff
path: root/content/geometry/polygon.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'content/geometry/polygon.cpp')
-rw-r--r--content/geometry/polygon.cpp150
1 files changed, 150 insertions, 0 deletions
diff --git a/content/geometry/polygon.cpp b/content/geometry/polygon.cpp
new file mode 100644
index 0000000..3178290
--- /dev/null
+++ b/content/geometry/polygon.cpp
@@ -0,0 +1,150 @@
+// Flächeninhalt eines Polygons (nicht selbstschneidend).
+// Punkte gegen den Uhrzeigersinn: positiv, sonst negativ.
+double area(const vector<pt>& poly) { //poly[0] == poly.back()
+ ll res = 0;
+ for (int i = 0; i + 1 < sz(poly); i++)
+ res += cross(poly[i], poly[i + 1]);
+ return 0.5 * res;
+}
+
+// Anzahl ccw drehungen einer Polyline um einen Punkt
+// p nicht auf rand und poly[0] == poly.back()
+// res != 0 or (res & 1) != 0 um inside zu prüfen bei
+// selbstschneidenden Polygonen (definitions Sache)
+ll windingNumber(pt p, const vector<pt>& poly) {
+ ll res = 0;
+ for (int i = 0; i + 1 < sz(poly); i++) {
+ pt a = poly[i], b = poly[i + 1];
+ if (real(a) > real(b)) swap(a, b);
+ if (real(a) <= real(p) && real(p) < real(b) &&
+ cross(p, a, b) < 0) {
+ res += ccw(p, poly[i], poly[i + 1]);
+ }}
+ return res;
+}
+
+// Testet, ob ein Punkt im Polygon liegt (beliebige Polygone).
+// Ändere Zeile 32 falls rand zählt, poly[0] == poly.back()
+bool inside(pt p, const vector<pt>& poly) {
+ bool in = false;
+ for (int i = 0; i + 1 < sz(poly); i++) {
+ pt a = poly[i], b = poly[i + 1];
+ if (pointOnLineSegment(a, b, p)) return false;
+ if (real(a) > real(b)) swap(a,b);
+ if (real(a) <= real(p) && real(p) < real(b) &&
+ cross(p, a, b) < 0) {
+ in ^= 1;
+ }}
+ return in;
+}
+
+// convex hull without duplicates, h[0] != h.back()
+// apply comments if border counts as inside
+bool insideConvex(pt p, const vector<pt>& hull) {
+ int l = 0, r = sz(hull) - 1;
+ if (cross(hull[0], hull[r], p) >= 0) return false; // > 0
+ while (l + 1 < r) {
+ int m = (l + r) / 2;
+ if (cross(hull[0], hull[m], p) > 0) l = m; // >= 0
+ else r = m;
+ }
+ return cross(hull[l], hull[r], p) > 0; // >= 0
+}
+
+void rotateMin(vector<pt>& hull) {
+ auto mi = min_element(all(hull), [](const pt& a, const pt& b){
+ return real(a) == real(b) ? imag(a) < imag(b)
+ : real(a) < real(b);
+ });
+ rotate(hull.begin(), mi, hull.end());
+}
+
+// convex hulls without duplicates, h[0] != h.back()
+vector<pt> minkowski(vector<pt> ps, vector<pt> qs) {
+ rotateMin(ps);
+ rotateMin(qs);
+ ps.push_back(ps[0]);
+ qs.push_back(qs[0]);
+ ps.push_back(ps[1]);
+ qs.push_back(qs[1]);
+ vector<pt> res;
+ for (ll i = 0, j = 0; i + 2 < sz(ps) || j + 2 < sz(qs);) {
+ res.push_back(ps[i] + qs[j]);
+ auto c = cross(ps[i + 1] - ps[i], qs[j + 1] - qs[j]);
+ if(c >= 0) i++;
+ if(c <= 0) j++;
+ }
+ return res;
+}
+
+// convex hulls without duplicates, h[0] != h.back()
+double dist(const vector<pt>& ps, vector<pt> qs) {
+ for (pt& q : qs) q *= -1;
+ auto p = minkowski(ps, qs);
+ p.push_back(p[0]);
+ double res = INF;
+ bool intersect = true;
+ for (ll i = 0; i + 1 < sz(p); i++) {
+ intersect &= cross(p[i], p[i+1]) >= 0;
+ res = min(res, distToSegment(p[i], p[i+1], 0));
+ }
+ return intersect ? 0 : res;
+}
+
+bool left(pt of, pt p) {return cross(p, of) < 0 ||
+ (cross(p, of) == 0 && dot(p, of) > 0);}
+
+// convex hulls without duplicates, hull[0] == hull.back() and
+// hull[0] must be a convex point (with angle < pi)
+// returns index of corner where dot(dir, corner) is maximized
+int extremal(const vector<pt>& hull, pt dir) {
+ dir *= pt(0, 1);
+ int l = 0, r = sz(hull) - 1;
+ while (l + 1 < r) {
+ int m = (l + r) / 2;
+ pt dm = hull[m+1]-hull[m];
+ pt dl = hull[l+1]-hull[l];
+ if (left(dl, dir) != left(dl, dm)) {
+ if (left(dl, dm)) l = m;
+ else r = m;
+ } else {
+ if (cross(dir, dm) < 0) l = m;
+ else r = m;
+ }}
+ return r % (sz(hull) - 1);
+}
+
+// convex hulls without duplicates, hull[0] == hull.back() and
+// hull[0] must be a convex point (with angle < pi)
+// {} if no intersection
+// {x} if corner is only intersection
+// {i, j} segments (i,i+1) and (j,j+1) intersected (if only the
+// border is intersected corners i and j are the start and end)
+vector<int> intersectLine(const vector<pt>& hull, pt a, pt b) {
+ int endA = extremal(hull, (a-b) * pt(0, 1));
+ int endB = extremal(hull, (b-a) * pt(0, 1));
+ // cross == 0 => line only intersects border
+ if (cross(hull[endA], a, b) > 0 ||
+ cross(hull[endB], a, b) < 0) return {};
+
+ int n = sz(hull) - 1;
+ vector<int> res;
+ for (auto _ : {0, 1}) {
+ int l = endA, r = endB;
+ if (r < l) r += n;
+ while (l + 1 < r) {
+ int m = (l + r) / 2;
+ if (cross(hull[m % n], a, b) <= 0 &&
+ cross(hull[m % n], a, b) != cross(hull[endB], a, b))
+ l = m;
+ else r = m;
+ }
+ if (cross(hull[r % n], a, b) == 0) l++;
+ res.push_back(l % n);
+ swap(endA, endB);
+ swap(a, b);
+ }
+ if (res[0] == res[1]) res.pop_back();
+ return res;
+}
+